

EIP Water Online Market Place Matchmaking for water Innovation

MAR Solutions - Managed Aquifer Recharge Strategies and Actions (AG128)

The Horizon 2020 FREEWAT project: FREE and open source software tools for WATer resource management

EPWater Conference 2016

How is water innovation succeeding in Europe? Leeuwarden, The Netherlands - 10 February 2016

Rudy Rossetto Scuola Superiore Sant'Anna, Pisa Italy, <u>r.rossetto@sssup.it</u>

www.freewat.eu

FREEWAT is an ICT project for improving Water Resource Management (WRM)

MAIN EXPECTED RESULT

Open source and public domain GIS integrated modelling platform for promoting WRM by simplifying and strengthening the application of WFD, GWD and other water related Directives.

FREEWAT expected main impact \rightarrow

help producing scientifically and technically sounding decision and policy making based on:

- data and innovative data analysis tools and
- including participatory approach not only in the final stage of discussion but also during the phase of scenario generation.

Concept and Motivations

1. free and open source tools, numerically based, GIS integrated, to perform to analyse conjunctive use of surface- and ground-water, and to boost the application of the WFD and water related Directives;

2. use effectively data provided by the extensive monitoring required by the WFD;

3. training technical staff at authorities and private companies on the use of state-of-the-art innovative software for water management;

4. including participatory approach earlier than only result discussion;

Open source characteristics of the project \rightarrow

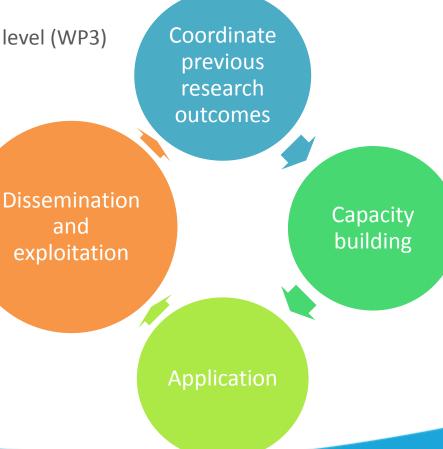
initiative "ad includendum" - further research institutions, private developers etc. may contribute to the project development

- The **EU Water Framework Directive** recognizes as relevant modelling activities for:
- testing hypothesis on conceptual models;
- validating scenarios to be included in River Basin Management Plans;
- water resource evaluation and forecasting;
- large engineering works impact assessment;
- evaluation of effectiveness of proposed contaminated water remediation activities.

FREEWAT Consortium

FREEWAT objectives

- to coordinate previous EU and national funded research to integrate existing software modules for water management in a single environment into the GIS based FREEWAT;
- to support FREEWAT application in an innovative participatory approach gathering technical staff and relevant stakeholders (policy and decision makers) in designing scenarios for proper application of water policies.

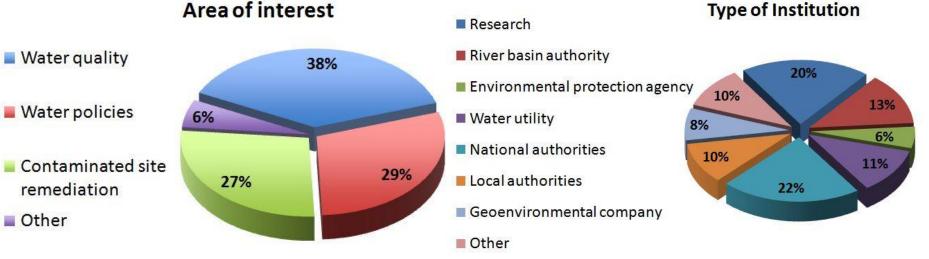

FREEWAT circular economy

SOFTWARE DEVELOPMENT AND CAPACITY BUILDING

- Building the software platform (WP2)
- Training the trainers (WP3)
- National scale training at Consortium countries level (WP3)

APPLY THE FREEWAT PLATFORM (WP4/5/6)

- Postulate the problem you have to solve;
- Gather the data;
- Discuss the data with relevant stakeholders
- Start the model implementation;
- Involve the stakeholders during model implementation and calibration;
- Apply the model for solving your problem;
- Producing policies!



FREEWAT CAPACITY BUILDING

- Large stakeholders involvement (more than 200 stakes involved)
- Web social and professional networks

(linkedin group yet 320 followers – twitter: 180 followers

@h2020freewat)

Area of interest

WHAT IS FREEWAT TODAY?

A QGIS integrated modelling environment in its beta age!!!

FREEWAT Processing Help		Create Transport Model
Data-Preprocessing (akvaGIS)	Lms	Flow Model Name ex_mt3d Set a name for Transport Model mymodel
Model Setup •	🦪 Create M	Mass Unit KG 💌
MODFLOW Boundary Conditions	Create Gr	Insert information on chemical species:
Solute Transport Process		species_name mobile s1 yes
Water Management and Crop Modeling (FARM PROCESS)	Create M	
Calibration/Sensitivity	Add Stres	
Tools		
DataBase +		If you have more than 5 species, load CSV file: Browse
Program Locations	: #orgiginal data CUC2.plot(quality=True)	Acopses filter CUC4.process(#Hydrograph separation nethod.ligitalFilter(#hydrograph separation 1, 0.0, orders, btype='loopa #hydrograph separation
Run Model	10 - 8 -	quality
Post-processing	al me low	base.plot() runoff.plot()
About Extensive testing going on	Calculate exceed	rom exceedanc. www.
	A = CUC2.process(meth print "Percentage(): print "Percentage(): print "Alue(\t:%s) print "	\$\$(10%* \$ A[0][0] \$(m3/s* \$ A[0][1]
	Percentage : 5.0 Value : 1.9 [[5. 1.967] [50. 2.761] [55. 4.968]]	967 m3/s 10 12 19 20

FREEWAT architecture

UPSCALING from cell results

WATER MANAGEMENT **AND PLANNING** MODULE

SPACE AND TIME DISTRIBUTED DATA Calibration Sensitivity Analysis

Groundwater **Flow Simulation** Water quality issues simulation and analysis tools

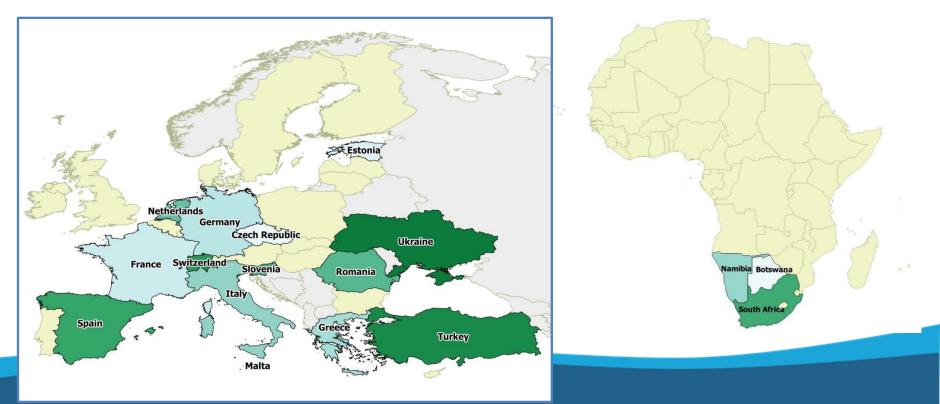
Rural water management module

Observation **GIS AND** SPATIAL

DATABASE

FREEWAT USER MANUAL

Volume 1


Groundwater modeling using MODFLOW-OWHM				
(One Water Hydrologic Flow Model)		Volume 2		
by Giovanna De Filippis⁽¹⁾, Matteo Ghetta⁽¹⁾ Rudy Rossetto⁽¹⁾		Heat and Solute Transport in Subsurface Water Flow		
,		by Iacopo Borsi ⁽¹⁾		
Volume 3		Volume 4		
Water management and c	rop-growth mod	AkvaGIS (Hydrochemical Analysis Tools and		
by Giovanna De Filippis ⁽¹⁾ and Rudy Rosset		Hydrogeological Analysis Tools)		
Release Beta 1.0		by Alejandro Serrano ⁽¹⁾ , Rotman Criollo ⁽¹⁾ and Violeta Velasco ⁽¹⁾		
ν.α.1				
		Release Beta 1.0		
Volume 5		V.a.1		
Observation Analysis Tool	Volun	ne 6		
by Massimiliano Cannata ⁽¹⁾	MODE	MODFLOW OBServation process		
Release Beta 1.0 by Lau		ura Foglia ⁽¹⁾ and Steffen Mehl ⁽²⁾		
V.a.1	Releas	lease Beta 1.0		
January 31st, 2016	V.a.1			

FREEWAT case studies

14 case studies:

- 8 for the application of WFD, GWD and others (EU countries) plus 1 case study in Switzerland
- 5 devoted to rural water management: 2 EUs, Turkey, Ukraine, and Africa (through UNESCO involvement)

FREEWAT PLATFORM ADVANTAGES vs. commercial simulation platform

- Unite the power of GIS geo-processing and post-processing tools in spatial data analysis to that of simulation software
- The chance for public authorities to build a high informative and dynamically growing representation of a hydrologic system (i.e. river basin) where perfoming data storage and planning analysis
- WRM modules thought for decision-making and policy applications
- No cost for licences (money can be moved to development of client tailored applications)

POTENTIAL DRAWBACKS

How to manage some code interdependencies

Need for continuation after project life potentially market-dependant

A GROWING LARGE COMMUNITY OF DEVELOPERS TO BE BUILT

Thank you for your attention!

FREEWAT - Free and Open Source Software Tools for Water Resource Management

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 642224