

GNI

Open Workshop ICT tools for innovating Groundwater Management in a changing world

September 22nd 2017

IDAEA. CID - CSIC

16 Jordi Girona. 08034 Barcelona

PROBLEMS, BENEFITS and RESULTS OF GROUNDWATER RESERVE CONSUMPTION The MASE and SASMIE Projects: Groundwater mining and seawater intrusion in Spain

Emilio CUSTODIO, Dr.I.E., Royal Academy of Sciences of Spain Deptment of Civil and Environmental Engineering Groundwater Hydrology Group Technical University of Catalonia (UPC), Barcelona

EIP Water Online Market Place Matchmaking for water Innovation

MAR Solutions - Managed Aquifer Recharge Strategies and Actions (AG128)

Taken from: http://travessa-pirineus.blogspot.com.es/2014/08/dia-15-de-lospitalet-al-refugi-de-juclar.html

Project FREEWAT Tools for monitoring groundwater in a changing world

PROBLEMS, BENEFITS and RESULTS OF GROUNDWATER RESERVE CONSUMPTION The MASE and SASMIE Projects: Groundwater mining and seawater intrusion in Spain

Serra de Crevillent, Alacant

Contents

Intensive use of groundwater Groundwater mining in the world The MASE Project The SASMIE Project Groundwater mining in Spain Seawater intrusion in Spain Environmental, economic and social issues Legal and administrative considerations Results, action, prospective and the way forward

Emilio CUSTODIO, Dr.E.I., Real Acad. Ciencias de España Dept. Ing. Civil i Ambiental. Grup d'Hidrologia Subterrània Universitat Politècnica de Catalunya (UPC), Barcelona

Hidroloaía

Subterránea

GH

ict4water.eu

EPWater Online Market Place Matchmaking for water Innovation MAR Solutions - Managed Aquifer Recharge Strategies and Actions (AG128)

Effects of groundwater exploitation

Definitions

• Intensive exploitación

→hydrogeological conditions are greatly modified:

- groundwater flow
- chemical composition
- relationships with other water cycle components
- reduction of dynamic groundwater reserves

Groundwater mining

- abstraction rate greater than possible recharge
- continuous consumption of groundwater reserves
- substitution of freshwater reserves for saline / brackish water
- no recovery in less than two human generations (about 50 years)

Groundwater intensive exploitation and groundwater mining \rightarrow similar initial evolution

Effects of intensive and mining groundwater exploitación

- Decrease / cessation of spring flow
- Decrease / cessation of river baseflow
- Reduction / dessication of wetlands
- Discharge areas become recharge areas
- Water level drawdown in wells
- Groundwater becomes progressively more expensive
- Possible groundwater mining → non-sustainable
 → but reserves may last many years
 Social benefits from development
- Environmental damage and social stress
- Possible changes in water quality → seawater intrusion
- It is a path toward a new form of using water and other resources
- It needs complex water governance and planning

EIP Water Online Market Place Matchmaking for water Innovation MAR Solutions - Managed Aquifer Recharge Strategies and Actions (AG128)

Groundwater mining in the world

Selected countries, around year 2000

Foster y Loucks, 2010

	Groundwater use, hm³/a			
Country	Groundwater / total water	Total, T	Non-renewable, NR	NR/T
Argelia	0,54	2600	1680	0,65
Saudi Arabia	0,85	21000	17800	0,85
Bahrain	0,63	258	90	0,35
Egypt	0,07	4850	900	0,19
UA Emirates	0,70	1900	1570	0,82
Libya	0,95	4280	3014	0,70
Oman	0,89	1644	240	0,15
Qatar	0,53	185	150	0,81
Tunis	0,59	1670	460	0,28
Yemen	0,62	2800	700	0,25
Spain	0,35	7000	300	0,04

Projects MASE and SASMIE

<u>Carried out by</u>: Dpt. Civil & Environ. Eng., Technical University of Catalonia (UPC) <u>Economic support:</u> AQUALOGY / SUEZ <u>Overview</u> : CETAQUA

<u>Objetive</u>: Analyzing the hydrological, hydrogeological, economic, managerial, social, environmental and ethic aspects of groundwater intensive exploitation

<u>MASE:</u> 2013–2015.- Groundwater mining in Spain → when recovery needs at least a few human generations

South-eastern Spain: South of Alicante, Murcia and Almería The Canary Islands: Gran Canaria and Tenerife

SASMIE: 2015-2017.- Groundwater salinization in Spanish Mediterranean and island coastal aquifers

Mediterranean coast of the Iberian Peninsula

Balearic and Canarian Archipelagos

METHODOLOGY → gathering of información

CONDITIONS No new studies

available (non-exhaustive) from experts

Integrated vision of water resources and their implications Without { looking for solutions proposing actions

Publication as an e-book by the UPC

2017–Terceira2–6

Intensive groundwater exploitation in Spain

Contract of the second s

Irrigation areas after water origin Red: groundwater Green: surface water LBA, 2000

Orange: mixed origin

Spanish aquífers in which "overexploitation" problems were detected in 1996 DGOH-ITGE, 1987

Percentage of groundwater used in agriculture 80% in the Peninsula 50–60% in the archipelagos

Water resources irregularity in Spain

Cumulated deviation relative to the mean in the time period, in metres

High irregularity Cyclic behaviour: 20 and 40 years → long dry periods

Annual precipitación Longest period : 1840–1995

LBA, 2000

Groundwater is much less variable → high reserve / recharge ratio Delayed and damped reaction Enviromental effects Water may become progressively more expensive Risk of groundwater mining and seawater intrusion Groundwater is a reserve → to overcome transient situations → to mitigate climate and global change effects

Groundwater reserve consumption

Preliminary estimation in 1995 in south-eastern Spain

	Groundwater reserves, hm ³					
Area	Consumed 1980–1995	Existing 1995	Usable 1995	Consumption rate hm ³ /a	Time for exhaustion, years	
Almería	800	1100	750	50	15 (10–75)	
Murcia	2000	10000	7100	125	60 (10–80)	
Alacant–Vinalopó	1000	7000	6000	50	120 (10–400)	

DOGH–ITGE, 1997

Very uncertain values Reserves still non-exhausted in 2015 Decreasing abstraction rate Slow recovery due to natural recharge

Total groundwater mined until 2014: 15 km³

🔵 ict4water.eu

Piezometric level deawdown in the Segura River basin

Piezometric level evolution → up to 20 m/yr (Cabezas, 2001, García–Aróstegui, 2013)

Cumulative average piezometric drawdown in the main intensively exploited aquifers (PHS, 2013)

Situación 2012

Salinization processes

AIO = Acuífero Inferior Occidental (West Lower Aquifer) AIN = Acuífero Inferior Noreste (North-East Lower Aquifer) Domínguez Prats et al. (2013)

ict4water.eu

Planned groundwater depletion

Aquifer in Alicante (Alacant)

Piezometric level and groundwater reserves. Solana aquifer (Villena-Beneixama)

Diputación de Alicante 2014 – MASE

Groundwater mining in the Canary Islands

Gran Canaria (GC) and Tenerife (TF)

General hydrogeological data on GC and TF

Number of significative groundwater capture works

etcg

GHS

Grupo de Hidrología

Subterránea

Large diameter wells and boreholes in Gran Canaria (Consejo Insular de Aguas de Gran Canaria)

		GC	TF	
Large-springs				
Water galeríes:	total	410	1670	
	in exploitation		1050	
Wells, boreholes:	total	2130	380	
	in exploitation	1330	172	

Water average resources, decade 2000–2010, hm³/yr

	GC	TF
Precipitation	465	865
Surface run-of	75	20
Recharge + return irrig. flows	90	240
Discharge to the sea	40	140
Groundwater mining	50	80
Groundwater-caption	100	180
Desalinization + debrackishing	80	20
Reuse	10	10
Total available water	<u>190</u>	<u>210</u>

2017–FREEWAT–14

Results for Gran Canaria and Tenerife

Groundwater discharge to the sea

moderate in Gran Canaria high in Tenerife

Cumulated reserve depletion (coarse approach)

ict4water.eu

0,3 – 0,5 km³ Gran Canaria 2 km³ Tenerife

- → Important reserves still remain
- → Actual abstraction < Total recharge (precipitation + irrigation return flows)

Time to groundwater level recovery \rightarrow decades

- → not possible in mid and high areas in Tenerife
 - ightarrow permanent drainage produced by the galeries

For capturing discharge to the sea • excessive drawdown

large investment high abstraction cost

- possible great water productivity loss
- serious risk of water quality deterioration

Grupo de Hidroloaía

Subterránea

GHS

idæa

ict4water.eu

Groundwater use (GW) and agricultural productivity in South-eastern Spain and the Canaries

				hm³/year		
	Use	Spain	Júcar	Segura	СМА	Canaries
	Urban	1500	320		140	125
	Irrigation	5000	1180	450	377	210
	Industry	300	100		3	8
	Recreation	65	10		20	12
	Total groundwater (GW)	7000	1610	485	540	355
	Total water use (TW)	31500	3156	1850	1225	510
	GW / TW	0,22	0,51	0,26	0,44	0,70
	GW irrigation / GW	0,71	0,73	0,93	0,70	0,59
M€/year	Total	15300	2260	1450	2460	340
-	GW	4730	410	585	1385	340
€/ha/year	Total	4600	4600	7200	11700	13600
	GW	5000	2800	8400 Modified from	16300 n De Stephano	13600 et al., 2013

Decrease of downstream river flow

La Mancha Oriental plains

Flow decrease in the Júcar River at the lower end

ightarrow due to irrigation with groundwater since the late 1960 decade in the headwaters

Llobregat delta deep aquifer, Barcelona

EIP Water Online Market Place Matchmaking for water Innovation MAR Solutions - Managed Aquifer Recharge Strategies and Actions (AG128)

Freshwater barrier to control seawater intrusion Injection by means of wells of highly-treated reclaimed urban waste water

Llobregat delta deep aquifer, Barcelona

Intensive groundwater exploitation effects

Real facts on intensive use and mining of groundwater in Spain

High abstraction cost: 0,3 a 0,5 €/m³ → up to >1 €/m³ in the Canaries \rightarrow still cheaper than other water sources at the place of use

regularly Water suppliers and farmers will continue using and mining groundwater in droughts

as an insurance

ge Strategies and Acti

 \rightarrow except if the cost of other water sources is subsidized \rightarrow economic distortion

Tendency to water transactions

- of public rights \rightarrow under the administration control
- of private rights (even if groundwater is a public domain) \rightarrow since long time ago

Water markets exist since one century ago in Gran Canaria, Tenerife and La Palma Islands

Groundwater mining \rightarrow is a fact

idæ

- \rightarrow it will continue if cheaper water is not made available
- \rightarrow who pays for the damage?
- \rightarrow actions that introduce some control \rightarrow increasing cost of energy for water abstraction: effective and external salinity and progressive deterioration of water quality: partly effective regulatory administrative-legal action : generally poorly effective

 \rightarrow it is nor known whether long-term social benefits > social costs

Groundwater use in droughts in the Campo de Cartagena

Extracción intensiva en sequías cuando fallan otras fuentes

«Drought wells» \rightarrow in use in the Mediterranean area

2017–FREEWAT–22

Prospective of groundwater use

A new Water Act is needed \rightarrow it should consider:

- groundwater rights realistically, not only un an administrative point of view
- flexibility to adapt to the changing reality
- guaranteed participation and involvement of all stakeholders
- improved and regulated decision, ejecution and corrective capacity
- a flexible equilibrium between use and ecological values
- economic-social aspects, explicitely
- regulated adequate knowledge, monitoring and control

is not intrinsically bad may contribute economic and social benefits must be under control benefits have to compensate for damage in the present / in the future is a transient situation { with a dead end recovery may be required

• groundwater mining

- how to compensate the costs transferred to others
- disproportionated costs
- ethics in evaluation and decision making

Groundwater mining \neq common mining \rightarrow it is essential to life and to ecological processes and services A political "pact" may be be needed for water management

Intensive groundwater exploitation, seawater intrusion and GW mining in the European Water Framework Directive

The following considerations define the WFD position:

- Intensive groundwater exploitation have to agree with environmental objectives
- Unfairly economic concurrence among state members have to be avoided
- Costs / problems have to be not transferred to the future
- Exceptions can be introduced if adequately argued and demonstrated
- Disproportionated costs may justify some exceptions → well-documented
- Groundwater mining /seawater intrusion is not allowed
- Recovery has to be carried out, if feasible

Intensive groundwater and mining environmental damage is: Often poorly known and non-evaluated Many effects happened decades ago \rightarrow people do not remember them Some effects are partly recoverable

Recovery

etca

Grupo de

difficult possible disproportionate cost possible damage in some areas possible groundwater use improvement → decreased pumping

EIP Water Online Market Place Matchmaking for water Innovation MAR Solutions - Managed Aquifer Recharge Strategies and Actions (AGI28)

Final considerations

Groundwater mining

Happens in many arid and semiarid countries \rightarrow it is a fact in Spain Not necessarily bad \rightarrow may provide important benefits Unsustainable in the long-term, but it may be a path to the future Needs adequate legal-administrative planning Needs a dedicated treatment \rightarrow do not generalize \rightarrow each case is unique

Groundwater mining & seawater intrusion have to be placed in the context of

- total water resources,
- other natural and human resources,
- social objectives,
- economic and social evaluation in the mid- and long-term,
- existing legal framework,
- ethical and moral principles,
- transient groundwater resources development \rightarrow change of paradigm

EIP Water Online Market Place Matchmaking for water Innovation MAR Solutions - Managed Aquifer Recharge Strategies and Actions (AG128)

Make a sound use of the large fresh groundwater reserves to

- Improve integrated water resources management efficiency
- Secure the reasonable estate and preservation of the environment
- Regulate groundwater mining as a transient evolution to a new water use paradigm
 - under the social and economic circumstances of the moment

