

FREE and Open Source Software Tools for

WATer Resource Management

FREEWAT User Manual – Volume 0

Reference Manual

Version 1.0

September 30th, 2017

1

This page has been intentionally left blank

2

FREEWAT User Manual - Volume 0

Reference Manual

Version 1.0

September 30th, 2017

By I. Borsi(1), L. Foglia(2), M. Cannata(3), E. Vázquez-Suñé(4), S. Mehl(5), G. De Filippis(6), R.

Criollo(4), M. Ghetta(6), M. Cardoso(3), V. Velasco(4), J. Neumann(3), A. Toegl(2), A.

Serrano(4), C. Riera(4), and R. Rossetto(6)

(1) TEA Sistemi SpA, Pisa (IT)

(2) Institut für Angewandte Geowissenschaften – TU Darmstadt, Darmstadt (DE)

(3) Istituto di Scienze della Terra – SUPSI, Canobbio (CH)

(4) Institute of Environmental Assessment and Water Research (IDÆA), Barcelona (ES)

(5) Department of Civil Engineering – California State University, Chico (CA)

(6) Istituto di Scienze della Vita – Scuola Superiore Sant’Anna, Pisa (IT)

This project has received funding from the European Union’s Horizon 2020 research

and innovation programme under grant agreement No 642224

This project document reflects only the authors' views and the European Union is not

liable for any use that may be made of the information contained therein.

3

FREEWAT Development has received funding from the following projects:

1. Hydrological part has been developed starting from a former project, named SID&GRID, funded by

Regione Toscana through EU POR-FSE 2007-2013 (sidgrid.isti.cnr.it)

2. Porting of SID&GRID under QGis has been performed through funds provided by Regione Toscana to

Scuola Superiore S. Anna - Project Evoluzione del sistema open source SID&GRID di elaborazione dei dati

geografici vettoriali e raster per il porting negli ambienti QGis e Spatialite in uso presso la Regione

Toscana (CIG: ZA50E4058A)

3. Saturated zone solute transport simulation capability has been developed within the EU FP7-ENV-2013-

WATER-INNO-DEMO MARSOL. MARSOL project receives funding from the European Union's Seventh

Framework Programme for Research, Technological Development and Demonstration under grant

agreement n. 619120 (www.marsol.eu)

4. Latest Version of FREEWAT is under development within EU H2020 project FREEWAT - Free and Open

Source Software Tools for Water Resource Management. FREEWAT project has received funding from the

European Union’s Horizon 2020 research and innovation programme under grant agreement n. 642224

(www.freewat.eu)

Suggested citation:

I. Borsi, L. Foglia, M. Cannata, E. Vázquez-Suñé, S. Mehl, G. De Filippis, R. Criollo, M. Ghetta, M. Cardoso,

V. Velasco, J. Neumann, A. Toegl, A. Serrano, C. Riera, and R. Rossetto. FREEWAT User Manual, Volume 0

– Reference Manual, version 1.0, September 30th, 2017.

License:

FREEWAT documentation is licensed as Creative Commons Attribution – Share Alike (CC BY-SA,

https://creativecommons.org/licenses/by-sa/3.0/).

http://ut11.isti.cnr.it/SIDGRID/index.php
http://www.marsol.eu/
http://www.freewat.eu/
https://creativecommons.org/licenses/by-sa/3.0/

4

Contents

Abstract ... 6

1 Introduction .. 7

2 Groundwater flow modeling .. 9

2.1 Conceptualization of groundwater modeling in FREEWAT 9

2.2 Conceptualization of Lake Package ... 10

3 Solute transport ... 14

3.1 Conceptualization of solute transport in FREEWAT 14

3.2 Option to activate UZT (Unsaturated Zone Transport) 15

3.3 Conceptualization of USB (Unsaturated Solute Balance) 16

3.4 USB module in FREEWAT ... 19

4 Water Management Module .. 21

4.1 Conceptualization of Water Management in FREEWAT 21

4.2 Implementation in FREEWAT .. 26

5 AkvaGIS (Hydrochemical Analysis Tools and Hydrogeological Analysis Tools) ... 27

5.1 Conceptualization of (AkvaGIS sub-module) .. 28

5.2 Hydrochemical and hydrogeological analysis tools in FREEWAT 30

6 Observation Analysis Tool (OAT) .. 41

6.1 OAT conceptualisation and FREEWAT implementation 41

7 Calibration and Sensitivity module.. 46

7.1 Structure of the calibration and sensitivity package 48

8 Examples of FREEWAT application .. 52

8.1 Application of Lake (LAK) package ... 52

8.2 Application of water management and crop growth modeling 54

8.3 Application of sensitivity and calibration module ... 57

5

8.4 Application of solute transport in the unsaturated zone 61

8.5 Application of akvaGIS ... 64

8.6 Application of OAT module ... 66

References .. 67

Document History ... 74

Appendix A Programmer documentation for Groundwater Modelling......................... 75

Appendix B Programmer documentation for Lake Package ... 78

Appendix C Programmer documentation for Solute Transport 82

Appendix D Programmer Documentation for USB module.. 83

Appendix E Programmer Documentation for Water Management Module 86

Appendix F Programmer documentation for AkkaGIS .. 91

Appendix G Programmer Documentation for OAT ... 128

Appendix H Programmer Documentation for Calibration Module 145

6

Abstract

This manual contains a theoretical background to the modules included in the FREEWAT

platform, developed within the HORIZON 2020 FREEWAT project (www.freewat.eu). For each

module, an overview on the conceptualization of the tool is presented, followed by its

implementation within the FREEWAT platform. The Reader is referred to the cited references to

get information on particular aspects of the codes included in each module, while a guidance

to apply each tool is documented in FREEWAT User’s Manuals (Vol 1 – 6).

Some illustrative examples implementing different FREEWAT capabilities are reported as well,

mainly taking such experiences from the 14 case studies run during the H2020 FREEWAT

project. That Section is particularly useful for the User approaching FREEWAT for the first time,

and willing to know examples of successful application of the modeling platform.

Finally, Appendixes A to H report the Programmer Documentation for each module of the

FREEWAT plugin.

7

1 Introduction

FREEWAT is conceived as a composite plugin for the well-known GIS open source desktop

software QGIS (http://qgis.org). The selected reference version of QGIS is the latest LTR (Long

Term Release), namely QGIS 2.14: even if this release will be maintained as the reference one,

it is worth mentioning that any test performed so far with subsequent versions (e.g. 2.16 and

2.18) worked without experiencing any problem. In Fig. 1.1 the QGIS bar with the FREEWAT

menu is reported, as example.

Figure 1.1 - The QGIS bar with the FREEWAT plugin menu included.

As composite plugin, FREEWAT is designed as a modular ensemble of different tools: some of

them can be used independently, while some modules require the preliminary execution of

other tools. In this framework, the following tool classifications can be defined:

• Tools for the analysis, interpretation and visualization of hydrogeological and

hydrochemical data and quality issues, also focusing on advanced time series analysis,

embedded in akvaGIS module.

• Simulation of models related to the hydrological cycle and water resources

management: flow models, transport models, crop growth models, management and

optimization models (also related to irrigation management and rural issues).

• Tools to perform model calibration, sensitivity analysis and uncertainty quantifications.

• Additional tools for general GIS operations to prepare input data, and post-processing

functionalities (module OAT – Observation and Analysis Tool).

The structure of the FREEWAT Menu reflects as much as possible this classification, as shown

in the screen shot reported in Fig. 1.2.

Figure 1.2 – The FREEWAT menu expanded.

http://qgis.org/

8

The diagram reported in Fig. 1.3 shows how these different modules are interconnected,

taking as reference a standard modeling procedure.

Figure 1.3 – Interconnection among FREEWAT tools and modules.

FREEWAT architecture is based on the integration of different software tools (the so called

FREEWAT pillars): SQLITE relational database manager, external (free and open source) codes

like MODFLOW and MODFLOW-related programs as well as codes specifically developed for the

FREEWAT. The way of interconnecting such tools is done via Python programming language,

with extensive use of the Python library FloPy. A schematic representation of FREEWAT pillars

and their interconnection is showed in Fig. 1.4.

Figure 1.4 – FREEWAT pillars.

9

2 Groundwater flow modeling

The main component of FREEWAT plugin consists of a suite of modelling tools for performing

groundwater flow, and related processes. The hydrological model implemented in FREEWAT

allows simulating the entire hydrological cycle, provided that climate data, like rainfall and

temperature, are available. However, it is also possible to focus only on selected parts of the

model.

The simulated processes cited in this section are:

• groundwater flow in the saturated zone, including interaction with surface water

bodies (e.g., rivers, lakes, drains);

• vertical flow through the unsaturated zone and beneath surface water streams.

2.1 Conceptualization of groundwater modeling in FREEWAT

The modelling framework is based on the worldwide known 3D finite difference groundwater

flow MODFLOW and related codes (McDonald and Harbaugh, 1988), by integrating primarily

the MODFLOW-2005 version (Harbaugh, 2005). MODFLOW is a physically-based, spatially

distributed code developed by USGS, which simulates the groundwater flow dynamics in the

saturated and unsaturated zones, both in confined and unconfined aquifers with constant or

variable thickness and transmissivity values, in steady-state or transient conditions. In

MODFLOW applications, space is discretized in the form of a regular grid, while time is

discretised in stress periods (i.e., time intervals during which hydrologic stresses do not

change), which in turn may be divided in smaller time steps. MODFLOW source code, written in

FORTRAN, is open, well documented, freely available on the web at

https://water.usgs.gov/ogw/modflow/, and it has become global standard for groundwater

modelling applications. MODFLOW requires text input files using well-defined format and also

a specific file structure.

MODFLOW has a wide range of different Packages which allow to simulate several processes.

The current FREEWAT plugin includes the majority of these Packages which are useful for the

simulation of the main hydrological and hydrogeological processes.

Hereinafter, a list of the MODFLOW Packages (Harbaugh, 2005), grouped in categories, is

provided:

• Basic Packages:

– Basic (BAS)

– Discretization (DIS)

– Layer Property Flow (LPF)

• Hydrogeological processes:

– specified-head boundaries

 Time-Variant Specified Head (CHD)

– specified-flux boundaries

 Recharge (RCH)

10

 Well (WEL)

– head-dependent flux

 Unsaturated Zone Flow (UZF)

 River (RIV)

 Lake (LAK)

 Drain (DRN)

 General-Head Boundary (GHB)

 Evapotranspiration (EVT)

 Multi-Node Well (MNW)

 Stream Flow Routing (SFR2)

Specific conceptualization for each package is here omitted. The Reader is referred to the huge

amount of documentation materials available to understand MODFLOW conceptualization

(among these, we mention the FREEWAT MODFLOW Lectures available in FREEWAT website,

http://www.freewat.eu).

As exception, some additional information on LAK package is reported below, since this tool

presents some specific aspects not included in other packages.

2.2 Conceptualization of Lake Package

The MODFLOW Lak7 package is implemented as one of the boundary condition options in the

FREEWAT modelling environment. The Lak7 package allows for the simulation of hydraulic

interaction between a lake and groundwater so that the effects of the changes in the water level

of one of the two water bodies is calculated on the other. In this function the lake package

differs greatly from previous methods used to simulate surface water bodies. Previously, these

were the constant head package, river package (Harbaugh, 2005), the reservoir package

(Fenske, Leake & Prudic, 1996) or the “High K” method outlined by Merrit & Konikow (2000).

The Lake package exists as part of the core hydrological modelling module as a MODFLOW

boundary condition. Its interface allows the user to specify lake variables needed by MODFLOW

such as lake leakance, or precipitation among others, and use the GIS tools to specify the

location of the lakes, and the feature attribute tables where necessary.

The lake package finds its use when the dynamic interaction between surface water and

groundwater is the subject of investigation. Simplified approaches, often used in the past take

into account either surface water or ground water alone. Surface water models simplify

interactions with the groundwater and simple MODFLOW models simplify the interaction with

the surface water. The LAK package was first developed by Cheng & Anderson (1993) to

simulate three-dimensional steady-state and transient ground-water flow with fluctuating lake

levels, taking into account, precipitation, evaporation, streamflow and groundwater flow.

Council (1997) demonstrated a real world example used to predict lake level decline in response

to a proposed underground mine. The USGS (Krohelski et. al., 2002) also uses the lake package

to investigate the causes of increased lake stages in three shallow seepage lakes and to propose

a solution pumping scheme to lower water levels based on a calibrated model. The dynamics

11

of lakes was investigated by Virdi and Lee (2009) in their investigation of Lake Starr with the

unsaturated zone and stream packages, a lake which fluctuates more than 13 feet during a 10

years period, as well as expanding between 96 to 148 acres between dry and wet years. The

permeable sand hills were simulated using the UZF1 package, allowing additional model cells

to be exposed to recharge and rainfall as the lake recedes. This approach is particularly suited

to simulating surface-water bodies such as wetlands and playa lakes (Virdi & Lee, 2009). They

were able to show the effects of climate extremes and pumping as stresses on the flow from

and to lakes and its surface area (Verdi et. al., 2012).

The lake package has also been used to assess the quantitative interaction of lakes with the

environment and groundwater within the scope of a contamination of lake sediments.

2.2.1 Conceptualisation of the lake package in FREEWAT

Within FREEWAT the Lake package is part of the module on hydrological modelling, as seen in

Fig. 1.1. The lake package can be classified as a MODFLOW boundary condition, and so falls

within this category, although it is significantly more complex that some other boundary

conditions, e.g. constant flow or constant head. The lake package calculates a separate water

budget for those cells identified as lake removing them from the solution of the groundwater

equation and setting them as inactive. Active groundwater cells adjacent to the lakes exchange

water at a rate determined by the relative calculated head in the aquifer and stage in the lake,

hydraulic conductivities of the aquifer and lakebed materials, and the area of the lakes. As result

the lake stage is recalculated every time step.

MODFLOW, which is the core of FREEWAT, is a finite-element model. Thus its elements are

defined by a discretization grid in three dimensions simulated by consecutive raster grid cells

with depth information. The Lake package is not an exception and the lake volume is calculated

by the 3D cells identified as lake. As a consequence of the finite-difference approach, the lake

stage is related to lake volume directly through the volume of the model grid cells marked as

lake cells, and their water level. Lake stage is crucial for determining the groundwater flow from

and to the lake. As the lake cells are inactive for the groundwater flow equation, the bottom of

the lake is identical to the bottom elevation of the grid cell. Adjusting the height of a cell is

approximate to adjusting lake bathymetry (Fig. 2.1). Additionally, the lake can dry completely

and re-wet during transient simulations if the lake stage drops below this cell bottom.

12

Figure 2.1 - A simplified representation of two methods for specifying lake bathymetry.

Supplementary sources and sinks of the lake water budget can take the form of atmospheric

recharge [LT-1], evaporation [LT-1], overland runoff following precipitation events [L3T-1] and direct

withdrawal [L3T-1]. The lake package supports several external packages, such as surface water

routing with the SFR package (Niswonger & Prudic, 2010), or as surplus from the unsaturated

zone flow package (Niswonger, Prudic & Regan, 2006), although the connections of lakes to

these packages is always implemented within those packages rather than within the lake

package, which acts as a passive reservoir.

The lake budget equation can be solved explicitly, semi- implicitly or implicitly by specifying the

time-weighting factor (0, 0.5 or 1 respectively) for transient stress periods. Additionally, the

number of iterations for solving the equilibrium lake stages using Newton’s method can be

specified, as well as the convergence criterion. Small topological variations in the lake bottom

can be added to give a smooth transition for the lake equilibrium stage solution as the stage

reaches the bottom of a cell; just before it dries up, or when it re-wets. The lake stage must be

specified only for the initial conditions while following transient and steady state stress periods,

the lake stage is determined by the lake solver. For any steady state stress periods, a minimum

and maximum stage must be specified. If the lake solver determines a stage higher or lower

than these limits, the simulation returns an error.

2.2.2 Implementation of the Lake Package in FREEWAT

In FREEWAT, the implementation of the Lake package can be generally separated into two steps.

During the first step, the model geometry and active cells can be modified before the lake

package itself is activated in the second. All model layer cells that contain lakes need to be

specified as inactive. To conform with lake bathymetry, the vertical size of the lake cells, i.e. the

thickness of the aquifer layers, can also be changed. The selection and editing of appropriate

cells is performed with existing QGIS tools. Additionally, any layers which contain lakes must be

convertible or unconfined and wet-able, and specified as such in the layer property flow (LPF)

table, used to define the basic properties of the MODFLOW model.

13

Figure 2.2 - The FREEWAT interface to create lake layers with a synthetic model.

The second step requires the activation of FREEWAT’s “Create lake layer” interface (Fig. 2.2) to

set lake solver properties, lake source and sink terms for each time step, as well as starting

stages, minimum and maximum stages, as well as lake leakance terms. Through this interface,

the lake layers are created. Time constant lake information (starting stage, min and max stages,

leakance and lake-bottom undulations) is stored in one model table. Another table stores all

time-variant information (precipitation, evaporation, runoff and withdrawal) for each time step

and for each lake. The lake cells also need to be assigned to a specific lake using the lake ID

which also specifies their lateral extent.

As a model result, the Lake package delivers the hydrologic budget summaries for the lakes for

each time step specified in the MODFLOW output control. This budget for each lake includes

stage, volume, volume change, precipitation, evaporation, runoff, inflow and outflow from

groundwater and surface water, water use, influx from connected lakes, surface area, stage-

change and percentage error, for each time step.

14

3 Solute transport

In FREEWAT the hydrological model can be coupled to a solute transport model, to simulate

advective and dispersive transport of several species, both in unsaturated and saturated zone.

The possibility to simulate viscosity and density dependent flow is present as well. Such

capabilities are particularly relevant to approach studies on seawater intrusion processes

(where density variations of water due to salinity effect are crucial), or for assessing geothermal

plants at low- and medium-enthalpy.

Simulation of heat transport (also coupled with additional chemical species) is possible just

treating heat as a species and defining diffusive coefficient and other parameters in a coherent

way.

3.1 Conceptualization of solute transport in FREEWAT

Solute transport is solved in FREEWAT by applying the well-known MT3DMS code (A Modular

Three-Dimensional Multi-species Transport Model for Simulation of Advection, Dispersion, and

Chemical Reactions of Contaminants in Groundwater Systems). The User can find details on the

code and documentation material (Zheng and Wang, 1999).

Furthermore, viscosity- and density-dependendent flows are solved by applying SEAWAT

(Simulation of Three-Dimensional Variable-Density Ground-Water Flow and Transport), which

is a revised version of coupling MODFLOW with MT3DMS, taking into account variations in

density and viscosity during the numerical resolution of the groundwater flow equation

(Langevin et al., 2007).

Finally, problems involving solute transport through vadoze zone are addressable in two ways:

 A simplified approach, computing an estimate of the pollutant leaching from the ground

surface up to the water table: here the amount of effective concentration is then used as

boundary condition for the MT3DMS code in the saturated zone. This approach is the

objective of USB (Unsaturated Solute Balance) module, documented in section below.

 Activating in the transport model the package UZT (Unsaturated Zone Transport), included

in the code MT3D-USGS (Bedekar et al., 2016), a USGS updated release of the groundwater

solute transport code MT3DMS. Some additional remarks about this mode is reported in a

specific sub-section below

The following processes active in the saturated zone (each one corresponding to a specific

package of MT3DMS or SEAWAT code) are implemented in FREEWAT:

 ADV (Advection package).

 DSP (Hydrodynamic Dispersion), taking into account mechanical dispersion and

molecular diffusion phenomena.

 SSM (Sinks and Sources Terms), simulating solute mass entering the model domain

through sources or leaving the model domain through sinks.

15

 RCT (Chemical Reactions), simulating equilibrium-controlled linear or nonlinear sorption,

nonequilibrium (rate-limited) sorption, and first-order reaction that can represent

radioactive decay or provide an approximate representation of biodegradation. The

general formulation sorption can also be used to model kinetic mass transfer between

the mobile and immobile domains in a dual-domain advection-diffusion model. No

reaction among different species can be considered (namely no geochemical reaction).

 VDF (Variable Density Flow)

 VCS (Viscosity-depedent Flow)

The following packages/options can not be activated directly from FREEWAT platform (to

activate them, the User needs to write or modify input files generated by FREEWAT):

 RCT (Chemical Reactions) package can be activated only in case of single species

simulations.

 HSS (Hydrocarbon Spill Source) package, to provide a seamless linkage to the MT3DMS

transport simulator for the Hydrocarbon Spill Screening Model (HSSM) version, is not

implemented in FREEWAT.

 Application of SEAWAT (density- and viscosity-dependent flow) is possible only in the

saturated zone.

3.2 Option to activate UZT (Unsaturated Zone Transport)

UZT (Unsaturated Zone Transport) implies the application of the code MT3D-USG (Bedekar et

al., 2016), coupled with the activation of UZF (Unsaturated Zone Flow) package in the flow

model. The latter has to be solved by a special version of MODFLOW, namely MODFLOW-NWT,

instead of the standard MODFLOW-2005. Therefore, for a successful activation of UZT package,

the User is required to download this code and to input the path of its executable file within

Program Locations table. The peculiarity of this procedure lies on saving flow fluxes also related

to the unsaturated part, namely the one computed by UZF package (1D simulation of vadose

zone, using the kinematic-wave approximation), and mapping it (along with storage changes)

onto the MODFLOW grid for use by MT3D-USGS. UZT requires to input: initial saturated

thickness, initial water contents, concentration associated with infiltration flux, concentration

associated with evapo-transpiration flux.

The following limitations apply to UZT included in FREEWAT platform:

 UZT can be applied also to multi-species problem, but a deep testing of this applicability

has not been carried out so far. Therefore, Users might experience some drawbacks on

multi-species problem with UZT active: in such cases, Users are kindly requested to

feedback these problems to FREEWAT Developers.

 Some testing models revealed problems in running MT3D-USGS when a significant

amount of surface leakage is generated by UZF package. FREEWAT Developers are in

contact with MT3D-USGS developers, who announced a new version coming soon, in

which such potential problems will be solved completely. FREEWAT Users should stay

tuned at https://water.usgs.gov/ogw/mt3d-usgs to follow code updates.

https://water.usgs.gov/ogw/mt3d-usgs

16

3.3 Conceptualization of USB (Unsaturated Solute Balance)

USB solves the following problem: if one (or more) area(s) on the ground surface are affected

by the presence of a pollutant species, it is necessary to estimate (for each stress period in the

model) how much concentration of this pollutant reaches the water table, and eventually

spread out following the ground water flow. USB will compute this estimate, according to the

following approach (Fig. 3.1):

1. Define the contamination zone on the top layer of the model (representing the

ground surface).

2. Run the MODFLOW model including the package UZF (Niswonger et al., 2006) to

estimate the top-infiltration rate, the unsaturated thickness and the aquifer recharge

rate (and save such info for each cell of the model where the source is placed).

3. Take the advection equation for the unsaturated zone, and estimate the solution by

means of a difference equation. This equation does not account for dispersion

phenomena, while a rate of decay can be defined by the User, to consider dissolution

phenomena (see details later on).

4. Take the solution (for each cell, for each stress period) as datum for the Constant

Concentration term in SSM Package of MT3DMS (Zeng and Wang, 1999), the latter

being the code included in FREEWAT to simulate solutes transport in groundwater,

i.e. saturated part of the model domain.

Figure 3.1 - A schematic of the coupling USB-UZF to estimate the solute concentration

reaching the water table (modified from Niswonger et al., 2006).

17

Details on the process of solute transport in the vadose zone

USB module estimates the concentration of the solute reaching the water table, by means of

the following procedure.

Let us consider the pure advection equation in vadose zone (dispersion phenomena are

neglected):

𝜕(𝜃𝑐)

𝜕𝑡
+

𝜕(𝑞𝑐)

𝜕𝑧
= − 𝜇𝜃𝑐 (1)

where:

μ is a decay coefficient [M/(L3 T)],

ϑ is the water content [dimensionless],

q is the Darcian flux [L/T],

c is the concentration [M/L3] (unknown).

Such an equation has to be coupled with the Richards’ equation describing the water flow in

the unsaturated zone (Niswonger et al., 2006). Instead of solving this coupling by means of a

numerical scheme, as done by the upcoming code MT3DMS-UZF (Morway et al., 2013), we can

obtain a mass balance within the unsaturated thickness: during the stress period (t, t + dt), being

dt the stress period length, eq. (1) can be read as a difference equation, namely substituting

derivatives with incremental differences, with (t, t+dt) as time range and (0, z(t+dt)) as length

range, respectively.

With this approach, eq. (1) leads to:

𝑐𝑜𝑢𝑡(𝑡 + 𝑑𝑡) = (1 − 𝜇)𝑐𝑜𝑢𝑡(𝑡) +
𝑑𝑡

𝑧(𝑡+𝑑𝑡)
[𝑞𝑖𝑛(𝑡 + 𝑑𝑡)𝑐𝑖𝑛(𝑡 + 𝑑𝑡) − 𝑞𝑜𝑢𝑡(𝑡 + 𝑑𝑡)𝑐𝑜𝑢𝑡(𝑡 + 𝑑𝑡)] ,

and,

𝑐𝑜𝑢𝑡(𝑡 + 𝑑𝑡) =
(1−𝜇𝑑𝑡)𝑐𝑜𝑢𝑡(𝑡)+

𝑑𝑡

𝑧(𝑡+𝑑𝑡)𝜃𝑠
𝑞𝑖𝑛(𝑡+𝑑𝑡)𝑐𝑖𝑛(𝑡+𝑑𝑡)

1+
𝑑𝑡

𝑧(𝑡+𝑑𝑡)𝜃𝑠
𝑞𝑜𝑢𝑡(𝑡+𝑑𝑡)

 , (2)

with cout(0) = 0 and where:

cin(t), initial concentration at the ground surface at time t (input),

qin(t), applied infiltration flux, at time t (retrieved from UZF output file),

z(t), unsaturated thickness, at time t (retrieved from UZF output file),

qout(t), flux of water (recharge rate) at the water table, at time t (retrieved from UZF output

file).

18

Eq. (2) applies to each cell of the top layer in which the contaminant source is present. In case

of more than one components (chemical species), this procedure is replicated for each

component.

Code verification

Formula (2) can be read as an intermediate procedure between the more accurate numerical

solution of the flow/transport problem in the unsaturated zone and the simpler calculus of a

leaching factor or dissolution factor. The latter is usually defined as the ratio between the

concentration of contaminant in water (evaluated at the water table) and the fraction of mass

of contaminant per unit volume of soil (at the ground surface), namely (Park and San Juan,

2000):

Lf = Cs/Cgw,

 Lf, leaching factor, dims. Kg/l

 Cs, mass fraction of concentration in soil at the ground surface, dimensionless.

 Cgw, concentration in water at the water table, dims. mg/l

If the amount of contaminant at the ground surface is expressed as water concentration (say

Cw) Cs can be calculated as

𝐶𝑠 = 𝐶𝑤
𝜃𝑤

𝜌𝑠(1−𝜃𝑠)
,

where 𝜃𝑤 , 𝜃𝑠 𝑎𝑛𝑑 𝜌𝑠 are the moisture water content, the porosity and the soil bulk density,

respectively.

Considering this analytical approach, we can compute the leaching factor obtained by USB. In

tests made to prove the robustness of the USB method (including the exercise done during

the training sessions c/o FREEWAT partners), we obtained a leaching factor ranging in the

order of 0.05÷2.3 Kg/l, which correspond to typical values used in literature (Park and San

Juan, 2000).

19

3.4 USB module in FREEWAT

The User can apply USB once a groundwater flow model has been defined, including UZF

package to represent the unsaturated zone flow. The sub-menu FREEWAT > Solute transport

> Create Unsat Solute Balance Layer opens a GUI to create the USB Model Data Object (MDO

in the following), the latter been a clone of the grid, limited to the zone(s) in which a

contaminant is present at the ground surface, and having as additional fields the

concentration value, for each stress period (Fig. 3.2).

Figure 3.2 - Right: GUI to create USB MDO; Left: attribute table of the MDO for USB.

The MDO is the basis to run the USB calculus, accessible through FREEWAT > Solute Transport

Process > Run Unsat Solute Balance Calculus (Fig. 3.3).

Figure 3.3 - Sub-menu and GUI to run the USB calculus.

USB calculus produces another MDO (Fig. 3.4), in which the obtained value for concentration

reaching the water table is saved, for each cell and for each stress period. This MDO can be

used to pass such values to the MDO for SSM package of MT3DMS (sub-menu FREEWAT >

Solute Transport > Create Sink and Source Layer), and eventually to run a transport model

considering this amount of contaminant as constant source (for each cell for each stress

period) active at the water table.

20

Figure 3.4 - Attribute table of the MDO containing results of USB calculus.

21

4 Water Management Module

FREEWAT includes capabilities to address water resource management. Their specific goal is to

exploit the output of a numerical simulation to solve problems of water delivery control and

optimization. This can be successfully obtained by upscaling the grid cell-based simulation

results, to get budgets of water demand and usage, focused on one (or more) zone(s) of the

model domain.

Conjunctive use of water is the joint usage and management of surface- and groundwater

resources to meet required water demand and minimize potential damage to the quantity or

quality of the resource. Therefore, to get an effective representation of conjunctive use of

surface and subsurface water, it is necessary to integrate simulation methods for subsurface,

surface, and urban and agricultural water-demand computations. Furthermore, these models

have to take into account the cases where there is not enough water supply to meet the total

water demand, and propose possible management strategies to cope with this problem.

FREEWAT simulates water management issues by applying MODFLOW-OWHM (Hanson et al.,

2014), which can be used also to include the specific computation of water demand coming

from rural environments and crops acreage.

4.1 Conceptualization of Water Management in FREEWAT

4.1.1 Water Demand Units

The basic concept in MODFLOW-OWHM is the Water Demand Unit (WDU), namely any “entity”

consuming water (urban zone, industrial zone, farms, rural areas, natural vegetation areas,

etc.). At each WDU the User can associate one or more source/sink of water (i.e. demand or

supply terms), varying in time. At the end of the simulation, a specific budget for each WDU is

produced in addition to the global budget for the entire model. Therefore, the User can analyze

a WDU budget as well as a comparison among different WDUs. From a modeling point of view,

a WDU is a model sub-region, made by a cluster of cells of the first model layer (top layer). Thus,

the whole grid is divided in one or more WDU by assign to each cell a WDU ID (namely, each

cell is associated to an only and only one WDU ID). In addition, the part of the grid not really

occupied by any WDU should be identified with a WDU ID.

4.1.2 Terms of Water Demand

For each WDU, a total water demand is input or computed, with the possibility to account of

several ways for defining different terms of water demand, namely:

 Crops water demand (in case of agricultural areas or natural vegetation areas are

modeled). This demand is computed as ET representing the target crop consumptive

use to meet. Defining such water demand term is essential whenever an

22

agricultural/irrigation problem is addressed. However, the entity “crop” can represent

not only real crops, but also any land-use type (urban environment, water bodies, etc.)

which are defined as “virtual crops” (Schmid et al., 2006; Schmid et al., 2009; Hanson et

al., 2014).

 Municipal and industrial urban water demand is user-specified as “negative supplies”

(specified as non-routed deliveries, see later on).

 The Total Delivery Requirement is defined as the portion of crop demand that is not met

by precipitation and uptake from groundwater, increased by the inefficiency losses from

irrigation.

4.1.3 Terms of Water Supply

For each WDU, for each stress period, the code attempts to satisfy the Total Demand

Requirement with one or more delivery terms, according to the following ranking:

 1st priority by the non-routed supply components (water transfer to/from a farm from

several kinds of sources, without simulating the process of conveyance).

 2nd priority by the semi- and fully routed deliveries (surface water: water transfer

to/from a WDU through a streamflow-routing network (fully routed) or specifying

diversion points from the main channel (semi-routed). The streamflow-routing network

is simulated through the SFR package in MODFLOW.

 3rd priority: ground-water pumping (wells) necessary to satisfy the total delivery

requirement.

4.1.4 Constraints on water supply

The User has the possibility to specify, for each WDU, surface- or groundwater allotments, to

represent water-rights.

Allocation constraints representing water-rights hierarchies can be imposed as surface-water

allotments. These surface- water allotments may be introduced into a model a as water rights

calls per stress period in units of [L3/T] for a prior appropriation system of ranked individual

WDUs.

Furthermore, the simulation of a groundwater allotment for each WDU is also possible. For

each WDU is given a volumetric-rate constraint that is the portion of the unit that can be derived

from groundwater sources. Each allotment can represent any kind of physical or governance

limit, such as a groundwater right or a transboundary operating agreement. Such limits on

groundwater abstraction are useful for the assessment of limits of groundwater supply such as

those imposed by development of a basin management plan or sustainability analysis that are

subject to other limits to groundwater supply from secondary effects (e.g. land subsidence,

seawater intrusion, streamflow capture, maintenance of groundwater-dependent ecosystems,

or adaptation schemes for climate change and climate variability).

23

Within a WDU, groundwater allotments refer to the entire WDU. In the meantime, for each well

associated to a WDU, the User imposes a maximum for the pumping rate. This is an additional

option to impose specific water rights to a single WDU, but associated to a specific location.

4.1.5 Optimization algorithms in case of Deficit Scenario

Once the water demand and supply have been computed (for each stress period), taking into

account possible constraints on surface- or groundwater delivery, the code compare the two

terms Demand and Supply.

If Demand is greater than Supply, than that WDU is in a deficit scenario. In this case, the code

allows estimating optimal distributions of supply components to cope with this deficit.

The User can apply two different optimization methods:

1. Crop priority-based (water-stacking): the User defines a priority ranking for the crops

(priority crops are crops which generally are not fallowed).

 The water supply is distributed according to the priority ranking

2. Economic optimization: User defines costs of water supply sources and profits related

to crops production.

 Then, the water supply is distributed according to the ranking of profitability.

Such a ranking is established by solving an optimization problem (linear

programming technique), in which the objective function is the sum of costs-

benefits balance, for each crop and on each cell.

In Fig. 4.1, a workflow is reported, describing how the code proceed in case of deficit scenario,

when one of the two optimization options is activated. The User is also free to select no

optimization procedure: in this case, the supply is just limited to the real available water

amount.

24

Figure 4.1 - Procedure applied to update source-term flow, depending on the deficit-response policy

selected by the User. From Schmid et al., 2006.

A summary of water demand and supply, along with specification of possible deficit scenarios,

it is reported in Fig. 4.2.

25

Figure 4.2 - A summary of water demand, supply and method to cope with deficit scenarios. From

Schmid et al., 2006.

26

4.2 Implementation in FREEWAT

Water management capabilities of FREEWAT can be applied once the hydrological model (say

the standard MODFLOW model) has been set up and run. At this stage, the User should be

confident on the key modeling features, namely: model convergence, parameters values

(potentially determined/analyzed by means of the sensitivity and calibration tools), consistency

of the model water budget. Assuming that the model has been finalized correctly, the User can

proceed to input the information needed to run management tools in MODFLOW-OWHM. All

these functionalities are accessible through the sub-menu FREEWAT > Water Management and

Crop Modeling (FARM PROCESS). More in detail, the following steps are needed:

1. Defining the classification of the model domain in WDUs.

2. Setting the properties for each WDUs (efficiency, water delivery costs, water allotments,

etc.)

3. Linking the model wells (if any) to WDUs, including for each of them a maximum value

for the pumping rate: this procedure defines the groundwater pumping availability and

constraints, for selected WDUs.

4. Linking pipeline diversions to WDUs (if any): this procedure defines the semi-routed

water delivery associated with selected WDUs.

5. Defining soils and crops distribution on the top model grid.

6. Defining soils properties, for each soil defined in the previous step: capillary fringe value.

7. Defining crops properties, for each crop defined in the previous step, such as irrigation

and ET losses efficiency coefficients, profits from crop production, crop coefficient, root

depth, etc.

8. Setting precipitation and reference evapotranspiration data.

9. Selecting model options and run the model (Fig. 4.3).

10. Analyzing the WDUs budget by plotting results printed in MODFLOW-OWHM output files

(FREEWAT > Post-processing > Plot budgets for Water Unit).

Figure 4.3 - Screen shot of the GUI to run the Water Management capabilities in FREEWAT.

27

5 AkvaGIS (Hydrochemical Analysis Tools and Hydrogeological Analysis

Tools)

This section describes specific tool included in FREEWAT to optimize the process of build the

conceptual model using hydrochemical data (Hydrochemical Analysis Tools, sub-module of

AkvaGIS tools).

The quality of the groundwater may be adversely affected by a large number of factors, such

as industrializations, urbanization, irrigation, etc. (Foster, 2001; Vázquez-Suñé et al., 2005).

Thus, a comprehensive evaluation of the negative impacts of these potentially hazardous

activities is key on the protection of groundwater bodies and ecosystems associated.

To ensure compliance with standard regulatory guidelines (with a special focus on the

requirement deriving from the GWD), continuous monitoring, evaluation, and interpretation of

a large number of physical and chemical parameters are required. Such data sets need to be

assessed and interpreted by water agencies, stakeholders and assessors to provide answers to

questions such as: (a) the processes controlling the chemical composition of groundwater and

the corresponding spatial and temporal distribution, (b) evaluation of the current groundwater

quality and the achievement of good chemical status based on national thresholds of the water

quality (e.g. Water Frame Directive (WFD), 2009) or (c) the regional background composition of

groundwater (Mendizabal and Stuyfzand, 2009), among others.

New capabilities have to develop to face: (i) the need to manipulate large data sets collected

over many years (Velasco et al., 2014); (ii) the integration of data stemming from diverse sources

and gathered with different data access techniques and formats; (iii) the management of data

with varying temporal and spatial extent; and (v) the integration of groundwater quality

information with other relevant information such as further hydrogeological data (e.g. heads)

and the pre-processing of these data in particular for the realization of groundwater models.

To face these difficulties, the Hydrochemical Analysis Tools sub-module was created to

complement the functionalities of the FREEWAT platform in the QGIS environment

(http://qgis.org). The selected reference version of QGIS is the latest LTR (Long Term Release),

namely QGIS 2.14.

It is worth mentioning that any test performed so far with subsequent versions (e.g. 2.16 and

2.18) worked without experiencing any problem.

The Hydrochemical Analysis Tools sub-module is part of the AkvaGIS module, perfectly

integrated into the FREEWAT platform. It is composed by a geospatial database implemented

in Spatialite and a set of tools for improving the harmonization, integration, standardization,

visualization and interpretation of hydrochemical data. These tools include different

instruments that cover a wide range of methodologies for querying, interpreting, and

comparing groundwater quality data and facilitates the pre-processing analysis for being used

in the realization of groundwater modelling. Some of the tools developed are: ionic balance

calculations, chemical time-series analysis, correlation of chemical parameters, and calculation

28

of various common hydrochemical diagrams (Salinity, Schöeller-Berkaloff, Piper, and Stiff),

among others. Furthermore, the sub-module allows the generation of maps of the spatial

distributions of parameters, diagrams and thematic maps for the parameters measured in the

queried area and classified according to the threshold approach established by a given

guideline, e.g. WFD.

This set of tools are part of a wider framework developed into FREEWAT (the module pre-

processing tools; AkvaGIS) created to facilitate the pre-processing of further hydrogeological

analysis and interpretations. The entry point to start using both set of tools is the Spatialite

database which contains the hydrochemical and the hydrogeological spatio-temporal

information to be represented or analyzed.

Further details on the platform usage are reported in the User Manual which has been

identified as User Manual (Volume 4). Details on the Python code structure and third party

libraries used and dependencies are given in Appendix F.

5.1 Conceptualization of (AkvaGIS sub-module)

This sub-module of AkvaGIS, module of FREEWAT, was designed bearing in mind the different

tools and methodologies that the water managers use to perform a comprehensive

hydrogeochemical analysis and quality issues including data check, diagrams and ionic ratios,

visualization, pre-processing and interpretation of the hydrochemical data. We first present the

technical requirements and specifications, and in the following section (section 3) how these

specifications were implemented in the final module of FREEWAT.

An effective methodology to assess hydrogeochemical data in groundwater modelling and

groundwater quality controls should meet the following technical requirements:

1. Storage, integration and management of spatial features and time dependent data on a

geospatial database, supporting:

1.1. Management of different data derived from both analyses of water samples at the

laboratory and field data.

1.2. Integration of different types of information (e.g. normative thresholds established

for a given hydrochemical parameter, heads, aquifer geometries, etc.).

1.3. Standardization and harmonization of data, including specific mechanisms to

facilitate data transcription, management of different formats, edition of data and

unit conversion.

1.4. Exportation of stored hydrochemical data in different formats such as .ods format,

to be used for further reporting or calculations in external software (e.g. openOffice).

2. Data processing and analysis of the data stored in the geospatial database using:

2.1. GIS environment (e.g. QGIS) which provides tools to: (1) estimate/validate the spatial

distribution of the chemical/physical components; (2) integrate different types of

data settings; (3) create interactive mapping; (4) perform an effective assessment of

consistency and correlation of the input data; (5) allow the spatial analysis with

external analytical tools.

29

2.2. Specific tools to facilitate the hydrogeochemical analysis by using data quality control

and conventional graphical analysis techniques (e.g. Stiff diagram).

2.3. Tools to facilitate the generation of maps showing the spatial distributions of

different physic-chemical parameters and thematic maps for the parameters

measured in the queried area and classified according to the threshold approach

established by a given guideline (e.g. Water Framework Directive.)

2.4. Tools to facilitate the spatial-temporal queries and visualization of the hydrochemical

data (e.g. creation of time evolution plots).

2.5. General tools of pre-processing (e.g. detection and visualization of outliers using

automatic calculation of some descriptive statistic such as maximum, minimum,

mean values, etc.) and validating data (e.g. deletion of duplicates and of obvious

transcription errors).

30

5.2 Hydrochemical and hydrogeological analysis tools in FREEWAT

The requirements enumerated in the previous section were adopted as guidelines during the

design of the present module of FREEWAT.

First, a geospatial database, specially designed to manage and store the hydrochemical data

was developed (AkvaGIS Database). A set of tools for managing, visualizing, analyzing,

interpreting and pre-processing these data were created and implemented in the FREEWAT

platform (Fig. 5.1).

Figure 5.1 - Sketch representing the different submodules of data pre-processing tools (AkvaGIS)

implemented in the FREEWAT platform in QGIS. Notice that Hydrochemical Analysis Tools are

highlighted in blue colour.

These tools and its main capabilities are described in the following subsections.

5.2.1 Database management tools

The AkvaGIS database was implemented in RDBMS Spatialite. Its structure facilitates: 1) the

data standardization and harmonization, 2) the storage and management of large amount of

spatial features and time-dependent data and 3) the creation and the execution of queries. This

database has been designed to include a wide range of information related to hydrochemistry

and hydrogeology. Fig. 5.2 shows the database scheme in terms of the hydrochemical tables.

Regarding the hydrochemical data, the database enables the user to include organic and

inorganic chemical records, as well as other relevant measured parameters (temperature, Eh,

PH, etc.). Further information about normative (e.g. WFD), field campaigns, and laboratory

experiments can also easily be included.

31

A complete description of the data content, structure and format of each element of the

database is described in the User Manual (Volume 4).

In the following, the hydrochemical tools inside the AkavaGIS are briefly described:

Figure 5.2 - Simplified conceptual diagram representing the main contents of hydrochemical data in the

hydrogeological database. The 1 and 1* represents the cardinality of the relationship between tables.

As occurs with the Hydrochemical Analysis Tools, the Hydrogeological Analysis Tools query and

visualize the different data stored in a geospatial database (AkvaGIS database) specially

designed to manage and store the hydrochemical and the hydrogeological data. This database

was implemented in RDBMS Spatialite and its structure facilitates: 1) data standardization and

harmonization, 2) storage and management of large amounts of spatial features and time-

dependent data, and 3) creation and execution of simple queries.

Regarding the hydrogeological data, the database enables the user to introduce

hydrogeological information such as wells descriptions (e.g. depth, curb, diameter, screen, etc.)

and hydrogeological spatio-temporal data (e.g. well abstraction or piezometric heads).

Moreover, AkvaGIS database contains spatial entities and attribute tables to describe and

represent different hydrogeological units. Thus, the user can improve the conceptual model

and it help to perform the hydrogeological model. Fig. 5.3 shows a scheme regarding to

hydrogeological tables.

In order to ensure the standardization, harmonization and interoperability of the data, several

code list and schemas of some features were created taking into account standard guidelines

(e.g. INSPIRE 2011, 2013, OGCWaterM.L2.0; OGC, 2012).

32

A complete description of the data content, structure and format of each element of the

database is detailed described in the as User Manual version (Volume 4).

Figure 5.3 - Simplified conceptual diagram representing the main contents of hydrogeological data in

the database. The 1 and 1* represents the cardinality of the relationship between tables.

The Database Tools included in the data-preprocessing Tools of AkvaGIS, is a set of commands

that enable us to create, open or close an AkvaGIS SpatiaLite database where the

hydrogeological data will be introduced to be queried by Hydrogeological Analysis Tools (see

Fig. 5.1, Database Management Tools). The management and introduction of data into the

database can be done using the different wizards provided by the inherent tools included in

QGIS.

 Manage Hydrochemical Data: allows to modify, insert (one by one or massively using .cvs

formats) and visualize hydrochemical data from existing points stored in the database.

5.2.2 Hydrochemical Spatial Query

 Hydrochemical Spatial Query: This command aids to quickly check data related to

laboratory and field campaign samples obtained from selected points in the screen for an

33

specific time interval. The hydrochemical spatial Query is created and stored in the database,

ready to apply be applied in other hydrochemical tools of the Hydrochemical Analysis Tools

sub-module (e.g. Piper diagram, Stiff diagram, ionic mass balance, etc.). Note that this tool

enable the visualization and management of the censored values (which are the concentrations

of some elements reported as “non-detected”, “less-than” or “greater-than”) allowing

conversion of censored values to numerical values that can be further included back into the

database.

5.2.3 Ionic Balance calculations

 Ionic Balance Report: This command was created to calculate ionic balance automatically

for each selected sample stored in the database. Once the query is done, the user can save the

results in a table or in an ionic balance report in .ods format.

5.2.4 Hydrochemical Diagrams

This set of tools was designed to facilitate the creation of standard hydrogeochemical diagrams

for interpreting groundwater chemical analysis. Piper, Salinity diagrams, Schöeller-Berkaloff,

and modified Stiff diagrams can be created automatically for the chosen dataset (only if the

parameters necessary for the creation of each diagram are available). Also, the user can edit

the plot setup (plot size, Point style, legend, etc.).

In order to illustrate the capabilities of this set of tools, the results of an applied case (Barcelona,

Spain)1 are shown in Fig. 5.4. The case is related to the query of a set of sampling points using

the Hydrochemical diagrams command for a test period of 3 years.

In the following the tools are briefly described, together with the applied case examples.

1 The results are presented only for illustration purposes, and they lack hydrochemical validity.

34

Figure 5.4 - Map of the study area showing the sampling points chosen as representative for illustrating

the capabilities of hydrochemical diagrams tools of AkvaGIS.

 Piper Plot: To create Piper Plots for a selected query. Fig. 5.5 shows the resulting Piper

diagram for a group of sampling points located in the study area.

Figure 5.5 - Piper diagram obtained with the command Piper Plot.

 SAR Plot: This command creates Salinity Diagrams of the selected query. Fig. 5.6 shows

the resulting SAR Plot diagram for a group of sampling points located in the study area.

35

Figure 5.6 - SAR diagram obtained with the command SAR Plot.

 SBD Plot: This command creates Shöeller-Berkaloff diagrams of the selected query. Fig.

5.7 shows an example of a SBD plot.

Figure 5.7 - Shöeller-Berkaloff Diagram obtained with the command SBD Plot.

 Stiff Plot: This command creates Stiff plots of the selected query (Fig. 5.8). The stiff

diagram results can be saved as .svg files.

36

Figure 5.8 - Stiff diagram for one sampling point of the study area.

 Stiff Diagram map: This command enables to obtain general statistical parameters

(minimum, maximum or mean value) of the selected group of data for being mapped in the

stiff map (Fig. 5.9). The results can be saved as .ods format.

Figure 5.9 - Stiff Maps obtained with the Stiff Diagram Plot Tool.

5.2.5 Hydrochemical Maps and Time plots

These tools enable to use the following range of methodologies and calculations for querying,

interpreting and comparing groundwater quality parameters:

37

 Time Plot: To create time plots of selected parameters of a selected query (previously

created with the Hydrochemical Spatial Query tool). Henceforward, the results are saved in a

table (e.g. as .csv, .ods formats) and automatically a time plot is performed.

 Chemical Parameter Plot: Use this command to obtain thematic maps for the selected

physic-chemical parameters. This tool computes general statistical parameters such as earliest,

latest, average, minimum, maximum or mean values for each selected parameter for a given

period of time and for a point or a group of selected points. These statistical values can be

represented in a map as point entities. Results can be easily used for further spatial analysis in

the same QGIS platform. In addition, the results of this query can be exported to external

platforms (e.g. .ods format).

 Parameter Normative Map: This command enables to obtain maps for the queried

parameters, classified according to the threshold values established by a given guideline (e.g.

Water Framework Directive). User can choose the Normative (different normative and

threshold values must to be introduced previosly in the database) to obtain a thematic map

with the selected parameters. The results can be saved. Fig. 5.10 shows a resulting map of

Nitrates classified according to a given normative (e.g. WFD for Nitrates).

Figure 5.10 - Resulting maps of distribution the Nitrates (mg/l) classified according to a given normative

using the Parameter Normative Map Tools.

Further tools included in this module provide different query forms that enable the user to

automatically query parameters such as major ions for the selected samples. In addition,

38

different methodologies for exporting the results of such queries are available (e.g. .ods format)

for being further processed or reported.

5.2.6 Hydrochemical external format

This set of tools enables to use different query criteria to be exported to external formats (e.g.

.ods, .xls or .csv files). In addition, these commands allow to export the query data to external

platforms (e.g. Easy_Quim, MIX or Statistical Tools). For more information about this set of free

external platforms see: http://h2ogeo.upc.edu/en/investigation-hydrogeology/software

 Export to Easy_Quim: This free tool provides a query form that enables the user to

automatically query the common major ions of the selected sample query, to export results to

different formats (e.g. .xls, .csv, .ods formats), including the query of the major ions for the

selected Query (i.e. for the selected points in the desired intervals). The resulting spreadsheet

follows the required format of EasyQuim.

 Export to Mix: This free tool provides a query form that enables the user to apply

different query criteria oriented to evaluate the mixing ratios of the samples. As result, a

classification of the samples in end-members (extreme composition of a mixing) or in samples-

members can be obtained for the selected parameters, that can be exported to different

portable format (e.g. .xls, .csv, .ods format). The resulting spreadsheet follows the required

format of Mix.

 Export to Statistical Analysis: This free tool enables the user to obtain, for the selected

query sample and for the selected parameters, different portable reports for further analysis

(e.g. statistical analysis).

5.2.7 Hydrogeological Spatial Query

 Hydrogelogical Spatial Query: This command aids to quickly check data related to

hydrogeological measurements (e.g. head, wells abstractions, etc.) performed in wells,

piezometers, springs, etc. This query only act for those points where hydrogeological

observations and measurements have been introduced into the database.

Use this command to create and add database queries of the selected points (spatial selection)

and for the desired time interval. Also campaign information can be used as query criteria.

Thus, hydrogeological tools can be applied to queries stored in the database or it can be used

in future analysis.

39

5.2.8 Hydrogeological Parameter Map

 Hydrogeological Parameter Map: This command enables to obtain general statistical

parameters (minimum, maximum or mean value) of the selected group of data for being

mapped. The results can be saved as .ods format. Fig. 5.11 shows a resulting map of piezometric

head created with this tool. Further analysis (e.g. piezometric surfaces) can be done by using

the inherent capabilities of QGIS.

Figure 5.11 - Sketch showing some results obtained using Hydrogeological Parameter Map Tools.

5.2.9 Hydrogeological Units Map

 Hydrogeological Units Maps: This command enables the user to create maps of

top/bottom for the selected hydrogeological units defined in the wells. First of all, the user

chooses the hydrogeological unit that want to query, then a map showing top and/or bottom

of each selected hydrogeological unit is performed as a result.

Fig. 5.12 shows the top of one hydrogeological Unit. To interpolate this information and made

a hydrogeological surface, QGIS has spatial Interpolation options. Thus, this layer can be used

to delimitate the Hydrogeological Unit geometry and apply it to build a numerical model with

other FREEWAT tools.

40

Figure 5.12 - Sketch representing the functionality of the Hydrogeological Units Maps tools. The user

can create and export hydrogeological units for further analysis (e.g. to build a numerical model).

5.2.10 Hydrogeological Time Plot

 Hydrogeological Time Plot: To create time plots of selected parameters of a selected

query (previously created with the Hydrogeological Spatial Query tool). Henceforward, the

results are saved in a table (e.g. as .csv, .ods formats) and automatically a time plot is

performed.

41

6 Observation Analysis Tool (OAT)

The Observations Analysis Tool is a tool to import, export and process time-series data,

implemented within the FREEWAT GIS environment. OAT is a Python package which is

integrated in the FREEWAT environment through an interface exposing its features to modelers

and non-programmer users. Within the organization of the FREEWAT plugin (Fig. 1.1), OAT falls

outside the core Hydrological module and fills the function of a tool for general operations to

prepare input data and post-processing functionalities; for time series data generally, as well

as online sensors specifically. Additionally, OAT provides a direct link to the observation

creation portion of the sensitivity analysis/calibration block. Groundwater head and river flux

observations can be read directly from OAT sensors. In FREEWAT, the observations can be

loaded into QGIS as CSV files directly and specified through the Create Head Observation Layer

interface. Within this interface is a checkbox which can be used to activate the link to a selected

OAT sensor. Provided the sensor has the correct attributes, and metadata, it will be used for

the head observations. The same can be done within the Create Flow Observation layer

interface. In this case, the difference between two sensors is used, i.e. the difference between

two streamflow gages representing the water gained or loosed by a river segment between the

two gages.

6.1 OAT conceptualisation and FREEWAT implementation

The OAT library implements two main classes: the Sensor class that is designated to handle time-

series data and metadata and the Method class which is designated to represent a processing

method. The library applies the behavioral visitor pattern which allows the separation of an

algorithm from the object on which it operates: thanks to this design pattern it is possible to

add a new processing capability by simply extending the Method class without the need to

modify the Sensor class. From a dependency point of view, OAT takes advantage of the PANDAS,

NUMPY and SCIPY packages.

The Sensor class took inspiration from the Sensor Observation Service standard and it’s istSOS

implementation (Cannata & Antonovic, 2010), with a specific simplification to ease its usage.

istSOS (Istituto Scienze della Terra Sensor Observation Service) has been used since 2009 as a

simple implementation of the SOS for the management, provision and integration of hydro-

meteorological data collected in Canton Ticino. It has also been used with the Verbano Lake

Early Warning System for lake level forecasting and flooding hazard assessment (Cannata et.

al., 2015). istSOS has also been used to develop a smart system to sustain optimal water usage

in irrigation within the European project ENORASIS (Cannata & Antonovic, 2015).

The second major component of OAT is its processing capabilities, based initially on the open

source TSPROC (Time Series Procressing) developed by Westenbroek et al. (2012). TSPROC is

model-independant but is often used with PEST (Doherty 2004) as a pre- and postprocessor

during model optimisation. TSPROC has been used in with a wide range of codes for hydrologic

models (Kim et. al, 2014; Cocca et. al., 2003; Skahill et. al., 2012), to “distill the large time-series

42

data set to a smaller set of observations and summary statistics that captured the salient

hydrologic information” for both model input and output (Walker et. al. 2007).

The general structure and implemented usage of the library in FREEWAT is depicted in Fig. 6.1.

Figure 6.1 - The OAT data retrieval, processing, storage and export workflow.

Each Sensor object is characterized by a single time-series that is represented by a data section

consisting in a PANDA’s time-series and a location/metadata section. Every OAT.Sensor object

can be stored in a spatialite DB and re-loaded back in OAT.Sensor with its own data and

metadata. For each sensor, the “metadata section” includes name, description, location (lat, lon,

elev), unit of measure, observed property, coordinate system, time-zone, frequency, weight

statistic and data availability (time interval). The “data section” contains time, data, name, and

quality index, as well as a tag marking whether or not an individual observation in the series

will be used. In addition to requesting sensor data from an istSOS server (Fig. 6.2), OAT can

retrieve data stored in local files or databases into the FREEWAT GIS environment for further

use. Further input accepted format may be implemented in the future. Additionally, model

results can also be imported as OAT sensor for further time series analysis.

43

Figure 6.2 - The interface for adding a new sensor from an istSOS server. The first row, “Input Data”

shows the other possible sources of sensor data.

The currently available OAT.Method objects are based on TSPROC processing capabilities

(Westenbroek et al. 2012), They are presented in Tab. 6.1, with the addition of FREEWAT specific

processes, and a couple of examples are shown in Fig. 6.3.

Method Effect

Digital Filter The digital filter Method calculates a new Sensor by passing an existing Sensor through a

digital filter to remove high or low frequency components.

Exceedence The Exceedance probability method calculates the exceedance probability after Searcy

(1959) for a particular Sensor.

Hydro events The extract hydrologic events method can be used to extract hydrographs for a time

period (in days) preceding and following a peak hydrologic event, such as a storm.

Hydro Indices The hydrologic indices are a series of statistical measures of streamflow used to

describe various ecologically important aspects of flow regime.

44

Quality The set quality method can be used to set uniform quality values for a Sensor within

time bounds, or to remove values that fall outside of specified value bounds.

Resample The resample method calculates a new time-series with a given frequency by sampling

values of a time-series with a different frequency.

Data values The data values method can be used to set uniform data values for a Sensor within time

bounds, or to remove values that fall outside of specified value bounds.

Hydrograph

separation

The hydrograph separation method is a filter which produces two time-series, storm-

flow and baseflow hydrograph, from stream discharge.

Integrate Several methods are available for integrating a Sensors time-series with respect to time.

Compare The Compare Sensors Method can be used to calculate several “Goodness of Fit”

statistics for two Sensors

Subtract The subtract method can be used to subtract the data values of a Sensor from the data

values of the selected Sensor.

Fill If a Sensor is missing data in the form of gaps, or if it contains no-data values, it can be

filled using a variety of methods.

Statistics The calculate statistics method returns some basic statistics for the Sensor time-series.

Hargreaves The Hargreaves-Samani equation (Allen et. al. 1998) can be used to estimate the

reference crop evapotranspiration using minimum climatological data.

Table 6.1 - The currently available methods available in OAT with a brief description. Full descriptions

are presented in the FREEWAT Manual, Volume 5.

Figure 6.3 - The fill (left) and hydro events (right) processes in OAT, used on an example precipitation

data set.

The result of a process is generally a new OAT.Sensor, so that processes can be concatenated,

and the final resulting time-series can be saved in the FREEWAT model database or exported.

As discussed in the package design, this library of processes is open and expandable to

incorporate users needs, specifically as an aspect of the participatory approach adopted in

FREEWAT development.

45

In preparation for model input the raw data processing capability of OAT are particular

important. In fact, since often available data will not have the same temporal discretisation as

the chosen modelling time, various filter and resampling or data fill methods are available to

create new, but statistically sound, time-series to be used as model input.

OAT incorporates the post-processing of model results by creating sensors with appropriate

temporal discretisation for the visualisation and further processing of model results as time-

series. MODFLOW head and flow observations, listing file volumetric budget components

(either as cumulative budgets or rates), and gage file components are currently supported

formats. Time-series visualisation is achieved through the Python Matplotlib module. Various

elements of the volumetric water budget for a MODFLOW model can be loaded as sensors and

visualised and compared, to other elements of the budget or to other relevant time-series or

observations (Fig. 6.4).

Figure 6.4 - Screenshot of the OAT menu in a sample simulation within QGIS showing the Manage

sensor and Compare sensor interfaces, with the case study grid in the background.

Groundwater head observations can be incorporated into the standard MODFLOW head

observation package using OAT and simulated heads can be uploaded from the model results.

Specifically for transient models with longer and possibly non continuous observation periods,

OAT offers improved visualization capabilities because the observations are separated by well

and correctly plotted along the time axis so that is possible to true to time with variable spacing

along the x-axis, rather than just sequentially, which allows their comparison with other time-

series, e.g. nearby GW stresses.

46

7 Calibration and Sensitivity module

UCODE_2014 is a universal software tool designed to perform sensitivity analysis, uncertainty

analysis, and model calibration (parameter estimation), as well as provide auxiliary tools for

analyzing data worth and data needs assessment. UCODE_2014 is designed to work with text

input and output files, and therefore, can interact with simulation models in a generic way.

UCODE_2014 automates the process of adjusting model parameter values, simulating the

models, and examining the simulated results (the procedure often done by hand). By

automating this often arduous process, and providing a common framework to compare both

models and parameters, and their uncertainties, the end result should be better and more

transparent models.

Model calibration is a process whereby various aspects of process-model construction and

parameter values are modified in hopes of improving how well the model represents the

system of concern. Part of model calibration includes changing the values of selected

parameters used to define model inputs. This part of the model calibration process is amenable

to application of optimization. This Parameter estimation is the process of adjusting model

parameters, within reasonable limits, such that simulated equivalents are as close as possible

to observed values.

Numeric model outputs include simulated values that may be compared to measured (or

“observed”) values and simulated values that may be considered predictions of future

conditions. Observed values commonly are referred to as “observations,” and the

corresponding model-simulated values are referred to as “simulated equivalents to

observations.”

How can UCODE_2014 assist in evaluating our models and our model results? Sensitivity

analysis and calibration can provide answers to the following questions:

1. What parameters are supported by the observations?

2. Are any of the parameters dominated by a single observation?

3. What model parameters are important to the things I need to predict?

4. What data should be collected to improve the predictions?

5. Which conceptual model of the system is likely to produce better predictions?

6. How certain are the predictions?

As graphically explained in Fig. 7.1, the calibration and sensitivity analysis module is directly

connected to the OAT module (using OAT it is possible to create the observation files for UCODE

as mentioned later) and is then embracing and interacting with all the other modules. Once the

main physical model will be developed, then the workflow would ideally go from using the

observation files created by OAT and then start the model sensitivity analysis and calibration

using UCODE. Then, it is expected that UCODE will provide suggestions on how to improve the

47

physical model and therefore the entire process can be developed again until the model results

are satisfactory.

With UCODE integrated in FREEWAT, the UCODE input file, template file, and instruction files

(Fig. 7.1) are automatically created based on a selection of parameters and observations. In the

current implementation, UCODE_2014 can be run in three modes: 1) forward (basic model

simulation), 2) sensitivity analysis, or 3) parameter estimation/optimization.

Figure 7.1 – Schematic of UCODE operation and of the files needed to run the software.

As mentioned above, UCODE_2014 is based on local sensitivity analysis and supports the use

of error-based weighting in model development.

Error-based weighting has appeared in the literature extensively (for example, Hill, 1992; Hill,

1998; Mroczkowski et al., 1997; Oliver et al., 2008; Foglia et al., 2009, Renard et al., 2011).

While local sensitivity analysis does not capture some aspects of nonlinearity that can be

captured by the other methods, such as local minima, experience has demonstrated that many

models of natural systems are linear enough for local sensitivity analysis methods to be useful

(for example, groundwater flow and advective transport in work by Anderman et al. [1996],

Poeter and Hill [1997], Hill et al. [1998], D’Agnese et al. [1999], Yager [1998, 2004], Hill [2006],

and Foglia et al. [2007]; conservative and reactive groundwater transport in work by Barlebo et

al. [1998, 2004], Mehl and Hill [2001], Barth and Hill [2005a, 2005b], and Hill et al. [2006]; and

streamflow and transport in work by Scott et al. [2003] and Gooseff et al. [2005]; Hill and

Tiedeman [2007] provide an overview).

48

7.1 Structure of the calibration and sensitivity package

7.1.1 Creating observation file

All types of observations are currently supported in FREEWAT: hydraulic head observations

using the HOB Package of MODFLOW and flow gain/loss observations from constant head,

drain, general head, or river boundaries, using the CHOB, DROB, GBOB, or RVOB Packages of

MODFLOW, respectively. These observations can also be derived from the Observation Analysis

Tool (OAT) included with FREEWAT.

7.1.2 Head Observation File

Fig. 7.2 shows an example of the observation file created for including head observations. If

available, it allows the user to include information on the well screens and well depth. Each well

needs to be identified by a well name that will be used both in MODFLOW and UCODE_2014.

Figure 7.2 – Example of Head Observation File.

7.1.3 Flow Observation File

Fig. 7.3 shows an example for the flow observation file. It is for the RIV package and creates

gains/losses observations (RVOB). Gain/loss observations are created selecting the all reach

where the fluxes between river and aquifer are calculated and the observation will be the total

net flow between river and aquifer.

49

Figure 7.3 - Example of river observation file (RVOB).

7.1.4 Selecting parameters

There are two possible types of parameters which can be included 3D parameters and 2D Time-

variant parameters. Parameters related to the three dimensional array inputs of the LPF (Layer

Property File) Package of MODFLOW are available, such as hydraulic conductivity (HK), vertical

hydraulic conductivity (VKA), specific storage (SS), and specific yield (SY) are fully integrated in

the platform. As parameters related to the two dimensional time-variant array inputs of the

RCH (Recharge) and EVT (Evapotranspiration) Package of MODFLOW are available. The

parameters can apply as a constant multiplier for the entire model layer (by designating the

“layer based” option) or can apply to a specific zone of the model (as designated by a zone ID

and associated QGIS layer of zonal values). This allows flexibility in defining the

parameterization that represents the heterogeneity of the aquifer system. Existing

parameterizations can be loaded in from a CSV file to allow users to quickly compare different

parameterizations. Options for parameter estimation and (like log transformation and the

maximum allow parameter change) as also supported.

Fig. 7.4 shows the details of how the parameter capability has been added into FREEWAT and

which type of information are needed to create the parameters template files.

50

Figure 7.4 – Interface for building the LPF parameters template file.

7.1.5 Model sensitivity analysis and calibration and post-processing of results

Sensitivity analysis and calibration capabilities have been developed and tested using different

types of observations, as mentioned above. For some of the parameters needed to run

UCODE_2014, standard values have been already wired into the code, but the user is always

able to define different parameter values if needed. These UCODE_2014 running parameters

include for example the number of iterations, the size of parameters perturbation, closure

criteria. Fig. 7.5 shows an example of the UCODE_2014 running window.

51

Figure 7.5 – UCODE_2014 running.

When performing sensitivity analysis, it is often most effective to plot measures of parameter

and/or observation importance to quickly determine key relationships between model

parameters and observed data. For these reasons, development of plotting capabilities is

currently being developed and tested. Fig. 7.6 presents an example of the plotting capabilities

under development.

Figure 7.6 – Example of post-processing plots.

52

8 Examples of FREEWAT application

8.1 Application of Lake (LAK) package

The lake package as a part of FREEWAT will be demonstrated through the case study of SUPSI-

IST. The Lugano Lake case study investigates the groundwater surface water interactions

between the Lugano Lake and the main porous aquifers that are connected to the lake basins

laterally. Although usually used to simulate seepage lakes within porous sandy aquifers, the

Lugano case study will apply the lake package in an alpine lake setting where large sections of

the lake are not in contact with the aquifers, only with bedrock, which is currently not simulated

(Fig. 8.1). The streams and rivers, within the simulated main aquifers, will be simulated using

the SFR, as will the connections between the lakes. The Lugano lake will be modelled as three

separate lakes. The northern basin, connected to the southern basin with a stream segment 50

m wide, and the southern basin connected to the small Ponte Tresa basin, just before the

outflow from the watershed, with another 50 m wide stream segment. Additionally, the small

north-eastern Lago di Piano near Porlezza will also be simulated. The main concern of

stakeholders in the area is the eutrophication due to phosphorous load to the lake. Although

phosphorus is only conditionally mobile in groundwater, the case study will investigate if those

conditions are met, i.e. if the flow within the simulated aquifers is primarily from the streams

to the aquifers.

53

Figure 8.1 - The lake Lugano case study area.

The model will also consider groundwater abstraction within the major aquifers and recharge

from precipitation. To date, the model grid has a horizontal discretization of 200 by 200 meters.

Vertical discretization is currently two model layers with irregular depth, dependent on the

DEM, geology and lake bathymetry. The lake is contained within the upper layer. Although

subject to change, the current model time is 24 monthly stress periods with daily time steps

from 1st Oct. 2012 to 30th Sept. 2014.

54

8.2 Application of water management and crop growth modeling

Application of MODFLOW-OHWM has been tested in several water management models, as in

the following.

 Hansons et al. (2010) applied MODFLOW-OHWM to model micro-agriculture system in

the Pajaro Valley (USA). The Authors analyzed the simulation of an aquifer storage and

recovery system and related coastal water distribution system, in response to climate

variations and additional supplemental sources such as local runoff. Such application

demonstrated the effectiveness of applying MODFLOW-OWHM for simulating natural

and anthropogenic components of the hydrologic cycle, aiming at analyzing and

managing the distribution and dynamics of water supply and demand.

 Furthermore, in Faunt (2009) Authors reported the application of MODFLOW-OWHM to

a larger and more complicated system extending over the Central Valley in California

(USA). The latter covers about 20.000 square miles and it is one of the most productive

agricultural regions in the world. Here, irrigated agriculture heavily relies on surface-

water diversions and groundwater abstraction. Approximately one-sixth of the Country’s

irrigated land is in the Central Valley, and about one-fifth of the Country’s groundwater

demand is supplied from its aquifers. The Central Valley also is rapidly becoming an

important area for California’s expanding urban population. This surge in population

has increased the competition for water resources within the Central Valley and

statewide, which likely will be exacerbated by anticipated reductions in deliveries of

Colorado River water to southern California. In response to this competition for water,

a number of water-related issues have gained prominence: conservation of agricultural

land, conjunctive use, artificial recharge, hydrologic implications of land-use change, and

effects of climate variability. To analyze such a complex water competition and to help

decision making, the U.S. Geological Survey’s (USGS) Groundwater Resources Program

is conducting a large-scale multidisciplinary regional study on groundwater availability,

in the Central Valley Aquifer System, coupling the use of long-term groundwater

monitoring data with groundwater models: simulations incorporate time-varying

stresses and they can be used to evaluate the effects of both climatic and anthropogenic

temporal changes in recharge and discharge on the hydrologic system between October

1961 and September 2003. This study is a valuable example of application of a numerical

model as a decision support system: a continuous update of data will allow a periodic

re-assessment of model setting and an up-to-date calibration of the model itself,

eventually leading to a dynamic tool for effective water management.

Such examples show also how MODFLOW-OWHM can consider river ecological status and

nature conservation, introducing constraints to take into account minimum environmental flow

55

and sustainable hydrologic regime, in addition to withdrawal rules and demand side

management options.

The following synthetic test aims at showing the successful application of FREEWAT as a

professional tool to address water management issues in both urban and rural areas, leading

to a shared and conjunctive use of ground- and surface-water resources. This example is

inspired to a hypothetical case study presented in Schmid et al. (2006). The model domain is

set in an alluvial valley slightly sloping from west to east.

The domain includes two water units (namely an agriculture farm and an urban zone), with

three types of crops/vegetation (urban vegetation, orchard and pasture) and three soil types

(silt, silty clay, and sandy loam). No crop rotation or fallow periods are simulated in this

modeling exercise. One single hydro stratigraphic unit having a flat basal surface (0 m a.m.s.l.)

is identified: a sandy unit, with variable thickness between 277 m and 300 m, hosting a porous,

phreatic aquifer. The domain is crossed by a main surface canal delivering water to the

irrigation district through an irrigation canal and by means of a gauge. As a further source of

freshwater, groundwater is pumped through ten vertical wells, 4 out of which deliver water to

the irrigation district, while the remaining are devoted to satisfy water demand of the urban

area (Fig. 8.2). The simulation is run in transient conditions over one year (365 days).

Figure 8.2 - Set up of the synthetic model used to illustrate the application of water management

module in rural and urban areas.

56

The purpose of this model is to couple the MODFLOW model with optimization strategies aimed

at satisfying the water demand raised by the two water units (rural and urban), resting on the

same catchment. In particular, the specific objectives of the modeling study are:

1. To investigate the relationships between ground- and surface-water in terms of

water budget.

2. To investigate the possibility (or not) to fully satisfy water needs of both farms,

assuming that groundwater is the only water source available within the

catchment.

3. To assess the (positive) effect of using conjunctively ground- and surface-water

at the agriculture water unit, in order to prevent unbalanced depletion of the

underground resources.

As a conclusion, the following could be stated about the application of MODFLOW-OHWM,

through FREEWAT, to such simple modeling exercise:

- For the urban area, the groundwater pumping (which is the only source available) does

not fully satisfy the water demand at certain periods (specifically between April and

June), thus resulting in a deficit scenario.

- For the rural area, the water supply provided by groundwater pumping through farm

wells fully satisfies the water demand, providing that groundwater is the only available

source of freshawater.

- Activating also a point of diversion from the main surface canal towards the irrigation

district allows to fully satisfy irrigation requirements of the rural area itself. In such case,

no groundwater abstraction is needed anymore, thus leading to a more sustainable

exploitation of the aquifer.

Therefore, this simple example shows as different scenarios of water management can be

simulated within FREEWAT, considering a common reference model, and including/excluding

water sources and/or water rights for each water units defined in the model domain.

57

8.3 Application of sensitivity and calibration module

UCODE has been widely applied for calibration and sensitivity analysis of groundwater flow and

transport models, and hydrological models. Some more example applications include:

- Calibration of nitrogen fate and transport modelling for example in the Florida onsite

sewage nitrogen reduction strategies study (Hazen and Sawyer, 2009).

- Automated calibration of a stream solute transport model: implications for

interpretation of biogeochemical parameters (Scott et al. 2003)

- Sensitivity analysis and calibration of a distributed physically based rainfall-runoff model

(Foglia et al. 2009). In this example performance of the statistical measures produced by UCODE

has been compared to standard measure used to evaluate the goodness of fit for hydrological

models, such as the Nash-Sutcliffe criterion.

- Calibration of models for simulation of Nitrogen Losses in Conventional and Advanced

Soil-Based Onsite Wastewater Treatment Systems under Current and Changing Climate

Conditions (Morales et al., 2016)

- Sensitivity analysis and parameter estimation of a watershed scale model to evaluate

the Watershed-Scale Impacts of Nitrogen from On-Site Wastewater Systems (Geza et al., 2010).

- UCODE has also been linked to another integrated hydrological model, MIKE-SHE, and

for example used to calibrate and validate a national hydrological model for Denmark

(Henriksen et al., 2003) For this model “Three model versions with different assumptions on

input data and parameter values were required until the performance of the final, according to

pre-defined accuracy criteria, model was evaluated as being satisfactory. The paper highlights

the methodological issues related to establishment of performance criteria, parameterization

and assessment of parameter values from field data, calibration and validation test schemes.

Most of the parameter values were assessed directly from field data, while about 10 ‘free’

parameters were subject to calibration using a combination of inverse steady-state

groundwater modelling and manual trial-and-error dynamic groundwater/surface water

modelling. Emphasizing the importance of tests against independent data, the validation

schemes included combinations of split-sample tests (another period) and proxy-basin tests

(another area).” (Henriksen et al., 2003).

Among the case studies run during FREEWAT project, implementing Calibration module,

hereafter a short description of Selisoo case study in Estonia (run by partner University of Tartu,

by colleagues Andres Marandi, Florian Zaun, Argo Jõeleht, Maile Polikarpus, Marko Kohv).

Selisoo bog in northeastern Estonia is a good example of area, where the direct impact of

underground mining activities on groundwater regime and therefore also on wetland water

balance can be studied by groundwater modelling. A 430 km2 area, where a wetland is located

within 3 km of an underground oil-shale mine was selected with the aim of the modelling to

assess the effect of underground mining and its possible future extension to a neighboring

wetland. The main task is to calculate if the peat layers and the Quaternary sediments (Q) below

the bog are sufficient to keep wetland from draining when underground mine, which operates

at the depth of 55 to 60 m from the ground surface, reaches under the wetland.

The model that was developed in this study is based on the groundwater flow model of Marandi

et al. (2013) and uses mainly the same input data for discretization. It covers an area of ca. 430

58

km² (27 × 16 km) in the north-eastern part of Estonia, ca. 20 km south of Jõhvi, being situated

between the Gulf of Finland and Lake Peipsi. It includes Selisoo and Ratva bogs as well as 95 %

of the area of the Estonia oil-shale underground mine.

The boundaries of the model were selected according to the presence of groundwater-level

monitoring wells, resulting in a grid of 270 columns and 161 rows (cell size 100 × 100 m). With

respect to the local hydrostratigraphy, 10 layers were differentiated (Fig. 8.3). The first 3 layers

(bog and Quaternary sediment) where created to simulate the bog sediments with rapidly

decreasing hydraulic conductivities from top to bottom in contrast to the other Quaternary

deposits. The model top is defined by a digital elevation model (DEM) and the areal distribution

and thicknesses of the horizons were gathered from drilling data and geophysics (GPR for peat

thickness) as well as results of previous studies of the oil-shale region and geological mapping

(bedrock). Except for the first layer, which was defined as convertible, all other layers are

simulated as confined aquifers in the Layer Property Flow Package (LPF).

Figure 8.3 - Conceptual cross-section of the groundwater model relating the model layers and geology

in the area

When modeling natural systems with incomplete data, such as in Selis0o case study, there are

always several possible representations of it. (Hill & Tiedeman, 2007) highly recommend

developing and discriminating between alternative models to solve problems concerning

different equally plausible interpretations of incomplete system information or problems with

model fit or optimal parameter values. In this study alternative models were developed in a

deterministic way, comparing different approaches of boundary representations. Due to the

varying design of the alternative models, the number of parameters was changing in different

models (Tab. 8.1).

59

Table 8.1 - Number of parameters and observations for the seven different alternative models. HK –

horizontal hydraulic conductivity, VK – vertical hydraulic conductivity, RCH – recharge rate, GHB –

General Head Boundary conductance, SFR – streambed conductivity, DRN – drain conductance.

Composite scaled sensitivities (CSS) and parameter correlation coefficients (PCC) were

determined with starting parameter values before any parameter estimation was conducted,

to select the most five influencing parameters, namely the ones named: HK_Par2, HK_Par4,

VK_Par1, VK_Par3, RCH_Main, RCH_Mine and RCH_Bog. Except for Not simulated, these five

parameters were included in the estimation process for all models. For Not simulated only two

recharge parameters were included in the regression. The parameter estimation results are

given in Tab. 8.2.

60

 HK_Par2 HK_Par4 VK_Par1 VK_Par3 RCH_Main RCH_Mine RCH_Bog

Starting value 4.00E+01 5.00E+00 1.00E−03 3.00E−04 1.60E−04 8.20E−04 1.00E−04

CHD 4.00E+02 8.15E−01 3.67E−03 3.13E−04 3.20E−04 − −

CHD + high

HK/VK
2.07E+02 5.18E−01 1.00E−02 1.51E−04 3.20E−04 − −

CHD + incr. RCH 1.20E+02 7.28E−01 1.00E−02 1.17E−04 − 1.60E−03 −

DRN 4.00E+02 7.81E−01 3.66E−03 1.45E−04 2.87E−04 − −

DRN + incr. RCH 2.82E+02 5.00E−01 9.51E−03 1.45E−04 − 1.60E−03 −

Not simulated − − − − 1.60E−05 − 1.02E−04

Table 8.2 - Summary of parameter values before and after parameter estimation. All parameters are

given in m/d. Bold values indicate that this parameter reached a constraint during the estimation

process. The dash indicates a parameter that was not included in the parameter estimation for this

model.

After successful parameter runs, simulated values and residuals were evaluated. Furthermore,

for comparison of alternative models, AIC, AICC, BIC and SSWR statistics of all six models were

evaluated. From this comparison the conclusion is that the lowest values for all four evaluated

statistics of overall model fit has the model DRN + incr. RCH, which therefore seems to give the

most accurate representation of the system.

61

8.4 Application of solute transport in the unsaturated zone

Knowledge of water and solute movement in the variably saturated soil near the earth surface

is essential to understand man's environmental impact: an accurate description of unsaturated

soil water movement is essential to derive proper management conditions for vegetation

growth and environmental protection in agricultural and natural systems.

Addressing this issue is of crucial importance to apply FREEWAT for facing problems in which

surface source of pollution is present, due to intentional or accidental release of surface-applied

and soil-incorporated chemicals into the environment. Typical examples are listed hereafter.

 Characterization of contaminated sites, to evaluate leaching of contaminants from soil

to ground water, e.g. benzene, toluene, ethylbenzene and xylenes (BTEX), or

radionuclides emanating from nuclear waste disposal facilities (Healy, 2007). A practical

example of modeling application is the one reported in Kresic (2006). A granular solid

contaminant was deposited at the land surface for 15 years at a constant annual loading

rate of 20.9 mg/m2. The contaminant is known to be recalcitrant (not readily

biodegradable) and so a numeric model for both the vadose zone and the saturated

zone below the source area was developed, to predict contaminant dissolved

concentrations as it leaches from the land surface, for the first 15 years of active

contaminant loading, followed by additional 15 years after the loading was discontinued.

So, the primary objective of the unsaturated-saturated groundwater model is to

demonstrate how the contaminant residing on the ground surface can leach to the

saturated zone through the vadose zone, and subsequently migrate in the saturated

zone off the immediate aquifer portion underlying the source area. The most interesting

achievement of this modeling study was the effect of a clay lens present in the

subsurface on contaminant fate and transport: due to low hydraulic conductivity and

contaminant sorption, the clay lens acts as a long-term storage, and a secondary source

of dissolved contaminant in the saturated zone.

 Environmental impact of a landfill on groundwater. An example of application is

reported in Anwar and Thien (2015). This modeling study investigated the potential

leachate of heavy metals from the landfill site of Rottnest Island in Western Australia.

This landfill was unlined, and this can easily cause leachate migration from the landfill

during rain events and can contaminate underlying groundwater. In the meantime, the

main freshwater resources at Rottnest Island are the two shallow unconfined aquifers

known as Wadjemup mounds. Boreholes were set up around the landfill site for

groundwater monitoring. The groundwater sampling from the boreholes showed

that there were heavy metals concentrations exceeding the guidelines given by

ANZECC for fresh and marine water quality, especially for copper and zinc

concentration. For this reason, the contaminant migration of these two heavy metals

were modelled for different solute transport parameters including initial

concentration, soil adsorption coefficient, longitudinal dispersion, saturated hydraulic

conductivity, initial soil water content and water diffusion coefficient. The results

revealed that soil adsorption parameter is the most dominating factors for leachate

transport in landfill site. The initial concentration also shows significant effect on mass

transport in soil. The longitudinal dispersion was found affecting moderately on

leachate migration but water diffusion coefficient has no effect. The initial soil moisture

62

and saturated hydraulic conductivity shows minimum effect on leachate transport in

soil.

 Studies involving prescription and recommendation given by EU Nitrate Directive, in

rural/agricultural context, to respect mandatory standards, such as the maximum

permissible nitrate concentration in groundwater (50 mg/L). Examples are reported in

Tafteh and Sepaskhah (2012) or Perego et al. (2011). The latter had the objective of

quantifying the nitrate leaching and its relation with ordinary management in 6 fields

with contrasting pedoclimatic conditions under grain and silage maize over a period of

2–5 years in Po Valley (Italy). The collected data sets were also suitable to be used as

input in a modelling application, being representative of the studied area, to estimate

the drainage flux.

A synthetic test applying UZT package is here presented, to show the successful application of

FREEWAT as professional tool to address contaminated sites modeling.

The aim is to estimate the effect of a prescribed source of contaminant (or tracer, in general),

released at the ground surface. Due to rainwater infiltration, this contaminant can infiltrate

through the vadose zone, eventually reaching the aquifer, where it will spread according to the

groundwater flow. In particular, such a situation refers to a decommissioning area, where a soil

contamination is detected. The complete removal of this contamination source took 90 days.

The local Environmental Protection Agency wanted to be sure that the contaminant plume (due

to the pollutant leaching) did not spread to an adjacent area, which is going to host a new

building block, whose construction will commence within 1 year. A picture showing the test area

is reported in Fig. 8.4.

Figure 8.4 - The decommissioned are where the contamination source was detected.

A solute transport numerical model is decided to get a technical sounding decision about the

need of designing and setting in action a remediation plan or, conversely, to claim that natural

attenuation will allow avoid a specific remediation activity.

The model represents the hydrologic structure of the site as a 3-layer system. The middle layer

serves to better represent a clay silty-sand lens of low-conductivity, which could prevent the

large spreading of the contaminant. The 360-day time range of simulation is divided in two

stress periods: the first one (90 day) with contamination active, and the second one (270 day)

63

without contamination. The other only stress on the system is the aquifer recharge due to

precipitation, modeled by UZF package (so that the flux in unsaturated zone can be calculated

as well).

In FREEWAT, the MOFLOW model including UZF package is easily implemented; after the

solution of the hydrological problem, the latter is coupled with a transport problem, including

only one species, having a (normalized) concentration in water of 1 Kg/m3.

Model results capture the slowing effect of the silty-clay lens (well evident if a cross section plot

is made, using some of the FREEWAT visualization functionalities, Fig. 8.5) and give the answer

to the initial question: in layer 1 (the most affected by contamination) concentration at the end

of Stress Period 2 (time Step 9) has a maximum value of around 0.0025 mg/ml (0.25% of the

initial concentration at ground surface). This gives evidence of the ineffective presence of

pollution, with respect to the position of our target (Fig. 8.5). Therefore, at within the 360-day

time range, remediation of the target site is not required.

(a) (b)

Figure 8.5 - A sample of results obtained by FREEWAT when running the synthetic test on solute

transport in vadose zone. (a) Cross section of contamination spread at the end of stress period 1 (90

days). (b) Raster representation of the contamination plume at the end of simulation (360 days) in

layer 1 (top layer), and its positioning w.r.t. the target zone.

64

8.5 Application of akvaGIS

The Hydrochemical Analysis Tools included in AkvaGIS can be used in all kind of projects.

Scientific community, public administration (e.g. Geological Surveys) and also the private sector

(e.g. water management, water supply, mining control, etc.) can get benefit from the easy way

that the tools create and customize reports and quickly analyse plots and diagrams.

There are several environmental assessments where is of crucial importance to apply FREEWAT

(specifically AkvaGIS tools) to store, share and manage data related to quality of water. Research

works, such as Puig et al., 2013 or Scheiber et al., 2015; 2016, in which hydrochemical analysis

of water quality were developed, could take advantage of these tools. For instance, a potential

user can be the current project called Gro for GooD: Groundwater Risk Management for Growth

and Development (https://upgro.org/consortium/gro-for-good/), in which different partners

and stakeholders have to share and use huge amount of data in the same format from the

beginning of the project.

FREEWAT project partner UTARTU (Tartu, Estonia), with the support of IDAEA-CISIC (Barcelona,

Spain), applied akvaGIS tool to create a database of Estonian groundwater body monitoring

points. This database includes 277 groundwater monitoring wells (Fig. 8.6) from all

groundwater bodies with daily groundwater level measurements and chemical analyses, which

were collected within year 2015. This database was used in the local FREEWAT training courses

(during the H2020 FREEWAT project) as a database example, so that anyone could download

and use it. Participants of the training courses found AkvaGIS to be a useful tool for their work.

Figure 8.6 - Estonian application of the AkvaGIS tools. Red dots are points with hydrochemical

information.

65

In the framework of the project: “Groundwater contribution to greenhouse gas (GHGs)

emissions from rivers” (Walloon Region, Belgium), AkvaGIS was applied to understand the

hydrochemical groundwater characteristics performing hydrochemical diagrams (i.e. Piper

plot) and spatial analysis (i.e. STIFF diagram maps), Figs. 8.7 and 8.8. The AkvaGIS database filled

will be used to store, manage and analyze future field campaigns in the area. The physical and

chemical data stored from 64 groundwater samples, were uploaded to the AkvaGIS database

after the field campaign.

Figure 8.7 - Piper plot of the sampling points from the 2016 campaign in the Walloon Region.

Belgium.

Figure 8.8 - Spatial distribution of the Stiff diagram of the Walloon region aquifers for the campaign

of 2016 in the Walloon Region. Belgium.

66

8.6 Application of OAT module

OAT as a part of FREEWAT will be demonstrated through the case study of SUPSI-IST. Fig. 8.1 of

the Lake section (above) shows the location of monitoring stations administered by SUPSI-IST

as well as the state administered monitoring stations within the Lake lugano watershed.

Temperature, precipitation, streamflow, stream height, humidity, atmospheric pressure, and

lake level, among others, are monitored through istSOS. For the Lake Lugano case study,

several of these are used to generate inputs for the model. Additionally, other sensor data can

be used for model calibration at a later stage. Precipitation data from the sensors was imported

from istSOS and, in conjunction with land use data, used to calculate the recharge applied to

the model cells of the aquifers. Temperature data was used with a newly added process to

calculate evaporation through the Hargreaves-Samani equation (Allen et. al. 1998), and was

used for evaporation from the lakes. Streamflow gages were used to estimate the inflow into

streams at the model boundary for those streams that originate outside of the model area. This

was done largely based on the relative surface area of gaged and ungaged sites. All of the above

time series were additionally automatically resampled to conform to the chosen temporal

discretisation of the model; monthly stress periods and daily time steps. The resampled time

series were used as model inputs for the various MODFLOW packages. The case study will also

use OAT for the automatic conversion of sensor time series data to head observations package

input during the model calibration phase, using ground water elevations recorded by SUPSI-

IST.

67

References

Allen R.G., Pereira L.S., Raes D. and Smith M. (1998). Crop evapotranspiration-Guidelines for

computing crop water requirements-FAO Irrigation and drainage paper 56. FAO, Rome, (56),

300.

Anderman E.R., Hill M.C. and Poeter E.P., 1996, Two-dimensional advective transport in

groundwater flow parameter estimation: Ground Water, 34(6):1001-1009.

Anwar F. and Thien L. (2015), Investigating Leachate Transport at Landfill Site Using HYDRUS-

1D," International Journal of Environmental Science and Development, 6 (10), 741-745.

Barlebo H.C., Hill M.C., Rosbjerg D. and Jensen K.H. (1998). Concentration data and

dimensionality in groundwater models: Evaluation using inverse modeling: Nordic Hydrology,

v. 29, p. 149-178.

Barlebo H.C., Hill M.C. and Rosbjerg Dan (2004). Investigating the Macrodispersion Experiment

(MADE) site in Columbus, Mississippi, using a three-dimensional inverse flow and transport

model: Water Resources Research, Vol. 40, No. 4, W0421110.1029/2002WR001935.

Barth G.R. and Hill M.C. (2005a). Numerical methods for improving sensitivity analysis and

parameter estimation of virus transport simulated using sorptive-reactive processes: Journal of

Contaminant Hydrology, v. 76, p. 251-277.

Barth G.R. and Hill M.C. (2005b). Parameter and observation importance in modeling virus

transport in saturated systems investigations in a homogenous system: Journal of Contaminant

Hydrology, v. 80, p. 107-129.

Bedekar V., Morway E.D., Langevin C.D., Tonkin M. (2016), MT3D-USGS version 1: A U.S.

Geological Survey release of MT3DMS updated with new and expanded transport capabilities

for use with MODFLOW: U.S. Geological Survey Techniques and Methods 6-A53, 69 p.

Cannata M. and Antonovic M. (2010). istSOS: investigation of the sensor observation service. In

WebMGS 1st international workshop on pervasive web mapping, geoprocessing and services,

Como, Italy (pp. 26-27).

Cannata, M. and Antonovic M. (2015). Sensor Observations Service for Environmentally

Optimizing Irrigation: istSOS within the ENORASIS Example. International Journal of

Geoinformatics, 11(3).

Cannata M., Antonovic M., Molinari M. and Pozzoni M. (2015). istSOS, a new sensor observation

management system: software architecture and a real-case application for flood protection.

Geomatics, Natural Hazards and Risk, 6(8), 635-650.

68

Cheng, X. and Anderson M. P. (1993). Numerical Simulation of Ground‐Water Interaction with

Lakes Allowing for Fluctuating Lake Levels. Ground Water, 31(6), 929-933.

Cocca P. A., Doherty J. and Kittle J. L. (2003). Hydrologic Calibration Strategies for the HSPF

Watershed Model: Identifying Effective Objective Functions for Use with the Parameter

Estimation (PEST) Program. In Proceedings World Water & Environmental Resources Congress

2003.

Council, G. W. (1997). Simulating lake-groundwater interaction with MODFLOW , in Proceedings

of the 1997 Georgia Water Resources Conference, ed. by K. J. Hatcher, pp. 6 p., The University

of Georgia.

D’Agnese F.A., Faunt C.C., Hill M.C. and Turner A.K. (1999). Death Valley regional ground-water

flow model calibration using optimal parameter estimation methods and geoscientific

information systems: Invited paper for a Special Section on Model Calibration and Reliability

Evaluation for Ground-Water Systems, eds. A. Leijnse and M.C. Hill, Advances in Water

Resources, vol. 22, no. 8, p. 777-790.

Doherty J. (2010). PEST, Model-independent parameter estimation—User manual (5th ed., with

slight additions) and addendum: Brisbane, Australia, Watermark Numerical Computing.

http://www.sspa.com/PEST/index.html

Doherty J. (2004), PEST: Model-independent parameter estimation, User manual: 5th ed.

Watermark Numer. Comput., Brisbane, Queensl., Australia.

Durelle S.T., Gooseff M.N., Bencala K.E. and Runkel R.L. (2003). Automated calibration of a

stream solute transport model: implications for interpretation of biogeochemical parameters,

Journal of the North American Benthological Society 2003 22:4, 492-510.

El-Zehairy, A.A.M.E. (2014) Assessment of lake - groundwater interactions : Turawa case, Poland.

Enschede, University of Twente Faculty of Geo-Information and Earth Observation (ITC), 2014.

European Community. (2000). Directive 2000/60/EC of the European Parliament and of the

Council of 23 October 2000 establishing a framework for Community action in the field of water

policy. Official Journal of the European Parliament, L327(September 1996), 1–82.

http://doi.org/10.1039/ap9842100196

European Commission (2009). Common implementation strategy for the water framework

directive (WFD) (2000/60/EC). Guidance document nº 22. Update guidance on implementing the

geographical information system (GIS) elements of the EU Water Policy. Technical report-2009-

028. ISBN 978-92-79-11373-4.

Faunt C.C. Ed. (2009), Groundwater Availability of the Central Valley Aquifer, California: U.S.

Geological Survey Professional Paper 1766.

69

Fenske J. P., Leake S. A. and Prudic D. E. (1996). Documentation of a Computer Program (RES1)

to Simulate Leakage from Reservoirs Using the Modular Finite-Difference Ground-Water Flow

Model (MODFLOW). U.S. Geological Survey, (Open-File Report 96-364), 51. Retrieved from

http://water.usgs.gov/software/MODFLOW/code/doc/ofr96364.pdf

Fienen M.N., D’Oria M., Doherty J.E. and Hunt R.J. (2013). Approaches in highly parameterized

inversion: bgaPEST, a Bayesian geostatistical approach implementation with PEST—

Documentation and instructions: U.S. Geological Survey Techniques and Methods, book 7,

section C9 , 86 p. Documentation available at http://pubs.usgs.gov/tm/07/c09. Program

available at: https://github.com/mnfienen/bgaPEST.

Foglia L., Mehl S.W., Hill M.C., Perona P., Burlando P. (2007). Testing alternative ground water

models using cross validation and other methods: Ground Water, 45(5): 627-641, doi:

10.1111/j.1745-6584.2007.00341.x.

Foglia L., M.C. Hill, S. W. Mehl, and P. Burlando (2009). Sensitivity analysis, calibration, and

testing of a distributed hydrological model using error-based weighting and one objective

function, Water Resour. Res., 45, W06427, doi:10.1029/2008WR007255

Foster, S.S.D. (2001). The interdependence of groundwater and urbanization in rapidly

developing cities. Urban Water, 3(3), 185–192.

Geza Mengistu, M. CE; Kyle E. Murray; and John E. McCray, M.ASCE (2010). Watershed-Scale

Impacts of Nitrogen from On-Site Wastewater Systems: Parameter Sensitivity and Model

Calibration, Journal of Environmental Engineering, Volume 136 Issue 9,

http://ascelibrary.org/doi/abs/10.1061/(ASCE)EE.1943-7870.0000232#sthash.5naglZt1.dpuf

Gooseff, M. N., Anderson J.K., Wondzell S.M., LaNier J., Haggerty R. (2005). A modelling study of

hyporheic exchange pattern and the sequence, size, and spacing of stream bedforms in

mountain stream networks, Oregon, USA . Hydrological Processes. 2915-2929, DOI:

10.1002/hyp.5790. (Pub No: 3863)

Hanson R.T., Schmid W., Faunt C.C., and Lockwood B. (2010), Simulation and Analysis of

Conjunctive Use with MODFLOW’s Farm Process, Ground Water 48(5):674-89

Hanson R.T., Boyce S.E., Schmid W., Hughes J.D., Mehl S.M., Leake S.A., Maddock T., Niswonger

R.G. (2014). One-Water Hydrologic Flow Model (MODFLOW-OWHM). U.S. Geological Survey,

Reston, Virginia.

Harbaugh A.W. (2005). MODFLOW-2005, The U.S. Geological Survey Modular Ground-Water

Model—the Ground-Water Flow Process. U.S. Geological Survey, Reston, Virginia.

Hazen and Sawyer, 2009, Florida Onsite Sewage Nitrogen Reduction Strategies Study TASK D.2

FINAL REPORT Literature Review of Nitrogen Fate and Transport Modeling, Florida Department

of Health.

70

Healy R.W. (2007). Simulating Water, Solute, and Heat Transport in the Subsurface with the

VS2DI Software Package, Vadose Zone Journal, 7 (2), 632-639.

Henriksen Hans Jørgen, Lars Troldborg, Per Nyegaard, Torben Obel Sonnenborg, Jens Christian

Refsgaard, Bjarne Madsen (2003). Methodology for construction, calibration and validation of a

national hydrological model for Denmark, Journal of Hydrology, Volume 280, Issues 1–4, Pages

52-71, ISSN 0022-1694, http://dx.doi.org/10.1016/S0022-1694(03)00186-0

Hill M.C. (1998). Methods and guidelines for effective model calibration: U.S Geological Survey

Water- Resources Investigations Report 98-4005, 90p. http://pubs.water.usgs.gov/wri984005/

Hill M.C. (2006). The practical use of simplicity in developing ground-water models: Ground

Water, 44(6):775-781.

Hill M.C. and Tiedeman C.R. (2007). Effective groundwater model calibration, with analysis of

sensitivities, predictions, and uncertainty: Wiley and Sons, New York, New York, 455 p.

Hunter J.D. (2007). Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering,

9, 90-95, DOI:10.1109/MCSE.2007.55

LIFE NITRATES – Repercussions of agricultural practices on the nitrate pollution of inland waters

(LIFE+10 ENV/ES/478) (2016), http://www.life-nitratos.eu/index.php/en/ [last access: June 2016]

Kim Y. J., Kim H. D. and Jeon J. H. (2014). Characteristics of water budget components in paddy

rice field under the Asian monsoon climate: Application of hspf-paddy model. Water, 6(7), 2041-

2055.

Kresic N. (2006). Hydrogeology and Groundwater Modeling, Second Edition, CRC Press.

Krohelski J. T., Lin Y. F., Rose W. J. and Hunt R. J. (2002). Simulation of Fish, Mud, and Crystal

Lakes and the shallow ground-water system, Dane County, Wisconsin (No. 2002-4014). US

Geological Survey.

Matott L. S. (2010). OSTRICH: An Optimization Software Tool. Accessed 12/27/2010 at

http://www.civil.uwaterloo.ca/lsmatott/Ostrich/OstrichMain.html

McKinney W. (2010). Data Structures for Statistical Computing in Python, Proceedings of the 9th

Python in Science Conference, 51-56

Mehl S.W. and Hill M.C. (2001). A comparison of solute-transport solution techniques and their

effect on sensitivity analysis and inverse modeling results: Ground Water, 39(2): 300-307.

Mendizabal I., Stuyfzand P. J. (2009). Guidelines for interpreting hydrochemical patterns in data

from public supply well fields and their value for natural background groundwater quality

determination. Journal of Hydrology, 379(1-2), 151–163. doi:10.1016/j.jhydrol.2009.10.001.

71

Merritt M. L. and Konikow L. F. (2000). Documentation of a computer program to simulate lake-

aquifer interation using the MODFLOW Ground-Water Flow Model and the MOC3D Solute-

Transport Model. U.S. Geological Survey Water-Resources Investigations Report 00-4167, 146.

Morales I., Cooper J., Amador J.A. and Boving T.B. (2016). Modeling Nitrogen Losses in

Conventional and Advanced Soil-Based Onsite Wastewater Treatment Systems under Current

and Changing Climate Conditions. PLoS ONE, 11(6), e0158292.

http://doi.org/10.1371/journal.pone.0158292

Morway E.D., Niswonger R.G., Langevin C.D., Bailey R.T., Healy R.W. (2013). Modeling Variably

Saturated Subsurface Solute Transport with MODFLOW-UZF and MT3DMS, GROUNDWATER,

Vol. 51, no. 2.

Niswonger, R.G., Prudic D.E., and Regan R.S. (2006). Documentation of the Unsaturated-Zone

Flow (UZF1) Package for modeling unsaturated flow between the land surface and the water

table with MODFLOW-2005. U. S. Geological Survey Techniques and Methods 6-A19, 62 p.

Niswonger R.G. and Prudic D.E. (2010). Documentation of the Streamflow-Routing (SFR2)

Package to Include Unsaturated Flow Beneath Streams—A Modification to SFR1: U.S. Geological

Survey Techniques and Methods 6-A13. US Geological Survey Techniques and Methods 6, (April

2010), 59. Retrieved from http://pubs.er.usgs.gov/publication/tm6A13

Park H.S., San Juan C., (2000). A method for assessing leaching potential for petroleum

hydrocarbons release sites: multiphase and multi-substance equilibrium partitioning, Soil and

Sediment Contamination, 9(6), 611-632, 2000.

Perego A., Basile A., Bonfante A., De Mascellis R., Terribile F., Brennac S., Acutis M. (2011). Nitrate

leaching under maize cropping systems in Po Valley (Italy), Agriculture, Ecosystems and

Environment 147, 57– 65.

Poeter E.P. and Hill M.C. (1997). Inverse models: a necessary next step in groundwater

modeling, Ground Water: v. 35(2), p. 250-260

Poeter E.P., Hill M.C., Lu D., Tiedeman C.R. and Mehl S. (2014). UCODE_2014, with new

capabilities to define parameters unique to predictions, calculate weights using simulated

values, estimate parameters with SVD, evaluate uncertainty with MCMC, and More: Integrated

Groundwater Modeling Center Report Number: GWMI 2014-02.

Puig R., Folch A., Menció A., Soler A., Mas-Pla J. (2013). Multi-isotopic study (15N, 34S, 18O, 13C)

to identify processes affecting nitrate and sulfate in response to local and regional groundwater

mixing in a large-scale flow system, Applied Geochemistry, Volume 32, Pages 129-141, ISSN

0883-2927. doi.org/10.1016/j.apgeochem.2012.10.014.

72

QGIS Development Team, (2016). QGIS Geographic Information System. Open Source

Geospatial Foundation Project. http://qgis.osgeo.org

Rossetto R., Borsi I. and Foglia L. (2015). FREEWAT: FREE and open source software tools for

WATer resource management. Rendiconti Online Della Società Geologica Italiana, 35, 252–255.

http://doi.org/10.3301/ROL.2015.113

Scheiber L., Ayora C., Vázquez-Suñé E., Cendón D. I., Soler A., Custodio E. and Baquero J. C.

(2015). Recent and old groundwater in the Niebla-Posadas regional aquifer (southern Spain):

Implications for its management. Journal of Hydrology, 523, 624-635.

Scheiber L., Ayora C., Vázquez-Suñé E., Cendón D. I., Soler A., & Baquero J. C. (2016). Origin of

high ammonium, arsenic and boron concentrations in the proximity of a mine: Natural vs.

anthropogenic processes. Science of the Total Environment, 541, 655-666.

Schmid W., Hanson R.T., Maddock T., Leake S.A. (2006). User Guide for the Farm Process (FMP1)

for the U.S. Geological Survey’s Modular Three-Dimensional Finite-Difference Ground-Water

Flow Model, MODFLOW-2000. U.S. Geological Survey, Reston, Virginia.

Schmid W. and Hanson R.T. (2009). The Farm Process Version 2 (FMP2) for MODFLOW 2005 -

Modifications and Upgrades to FMP1. U.S. Geological Survey, Reston, Virginia.

Searcy JK (1959). Flow-duration curves, Manual of hydrology, pt. 2, Low-flow techniques. U.S.

Geological Survey Water-Supply Paper 1542–A, 32 p.

Skahill, B. E., Downer, C. W., & Baggett, J. S. (2012). A Practical Guide to Calibration of a GSSHA

Hydrologic Model Using ERDC Automated Model Calibration Software-Efficient Local Search

(No. ERDC/CHL-TR-12-3). ENGINEER RESEARCH AND DEVELOPMENT CENTER VICKSBURG MS

COASTAL AND HYDRAULICS LAB.

Tafteh A., Sepaskhah R. A. (2012). Application of HYDRUS-1D model for simulating water and

nitrate leaching from continuous and alternate furrow irrigated rapeseed and maize fields,

Agricultural Water Management 113, 19-29.

Van der Walt, S., Colbert, S. C., & Varoquaux, G. (2011). The NumPy Array: A Structure for

Efficient Numerical Computation, Computing in Science & Engineering, 13, 22-30,

DOI:10.1109/MCSE.2011.37

Vázquez-Suñé E., Casamitjana A., Sánchez-Vila X., Melcion C., Alcolea A., Sanz E. (2005).

Hidrogeología de Badalona. Àmbit de Medi Ambient i Sostenibilitat .Ajuntament de Badalona.

Badalona, Spain, 83 pp.

Velasco V., Tubau I., Vázquez-Sunñé E., Gogu R., Gaitanaru D., Alcaraz M., Sánchez-Vila X. (2014).

GIS-based hydrogeochemical analysis tools (QUIMET). Computers & Geosciences, 70, 164-180.

73

Virdi M. L., Lee T. M. (2009). Simulating Lake-Groundwater Interactions During Decadal Climate

Cycles: Accounting For Variable Lake Area In The Watershed. AGU Fall Meeting Abstracts

Virdi M. L., Lee T. M., Swancar A. and Niswonger R. G. (2013), Simulating the Effect of Climate

Extremes on Groundwater Flow Through a Lakebed. Groundwater, 51: 203–218.

Walker J. F., Hunt R. J. and Doherty J. (2007). Effective Use of Time-Series Data to Calibrate a

Coupled Ground Water/Surface Water Model in a Small Headwater Watershed, Northern

Wisconsin. In AGU Fall Meeting Abstracts (Vol. 1, p. 0700).

Welter D.E., Doherty J.E., Hunt R.J., Muffels C.T., Tonkin M.J. and Schreüder W.A. (2012).

Approaches in highly parameterized inversion: PEST++, a Parameter ESTimation code

optimized for large environmental models. U.S. Geological Survey Techniques and Methods,

book 7, section C5, 47 p. http://wi.water.usgs.gov/models/pestplusplus/

Westenbroek S. M., Doherty J. E., Walker J. F., Kelson V. A., Hunt R. J. and Cera T. B. (2012).

Approaches in highly parameterized inversion: TSPROC, a general time-series processor to

assist in model calibration and result summarization. U.S. Geological Survey Techniques and

Methods, (7-C7), 112.

Yager R.M. (1998). Detecting influential observations in nonlinear regression modeling of

groundwater flow. Water Resources Research 34 (7), 1623–1633.

Yager, R.M. (2004). Effects of model sensitivity and nonlinearity on nonlinear regression of

ground water flow, Ground Water, v. 42, no. 3, p. 390-

400.http://www3.interscience.wiley.com/cgi-bin/fulltext/118752546/PDFSTART

Zheng C. and Wang P.P. (1999). MT3DMS, A modular three-dimensional multi-species transport

model for simulation of advection, dispersion and chemical reactions of contaminants in

groundwater systems; documentation and user's guide, U.S. Army Engineer Research and

Development Center Contract Report SERDP-99-1, Vicksburg, MS, 202 p.

74

Document History

30.09.2017 Release of v1.0

75

Appendix A Programmer documentation for Groundwater Modelling

The main part of FREEWAT plugin is conceived to serve as pre- and post-processor for

MODFLOW-2005 code.

The modelling workflow to execute a groundwater flow model in FREEWAT is schematize in the

following diagram.

76

The Python code belonging to this part of FREEWAT source code can be classified in three

main groups:

1. Code for defining and executing groundwater modelling

2. Code for executing model-related tools (to adjust or modify model settings)

3. Code for post-processing

For each of these branches, the link among different Python files is summarized in the

following diagrams.

Groundwater model definition and run:

77

Tools to change model settings or GIS-based tools:

Post-processing tools, including reading binary out files and post-processor codes (MODPATH

and ZONEBUDGET):

78

Appendix B Programmer documentation for Lake Package

class class CreateLAKLayerDialog(QDialog, FORM_CLASS)oatlib.sensor.Sensor

Initialize the interface

Parameters:

 QDialog (obj) – the Qgis dialog object
 FORM_CLASS (str) – user interface object

 --

manageGui ()oatlib.sensor.Sensor.ts_zeros

create the GUI

--

check_if_exists ()oatlib.sensor.Sensor.ts_zeros

Check if a lak_layer_group is loaded in qgis

--

load_data_from_db ()oatlib.sensor.Sensor.ts_zeros

load the data from sqlite to gui

--

add_new_lake ()oatlib.sensor.Sensor.ts_zeros

Read data from spinBox and create a new lake

--

read_sp_data ()oatlib.sensor.Sensor.ts_zeros

Read Stress period data from table

--

79

remove_selected ()oatlib.sensor.Sensor.ts_zeros

Remove selected lake from database

--

create_lak_layer ()oatlib.sensor.Sensor.ts_zeros

create new lake layer and add to qgis

Parameters:

 start_time (str) – starting timestamp of the time serie
 lenght (int) – lenght of the time serie
 frequency (str) – frequency of the time serie (‘H’,’D’,’M’,’Y’)

--

get_crs_from_model (model_name)oatlib.sensor.Sensor.ts_zeros

get the crs from modeltable_

Parameters:
 model_name (str) – the name oft he selected model

--

clear_sp_table ()oatlib.sensor.Sensor.ts_zeros

Clear stress period lak table and fill with

--

get_sp_period ()oatlib.sensor.Sensor.ts_zeros

get stress period list from timetable

--

layer_list_order(layer_list)oatlib.sensor.Sensor.ts_zeros

Read from the base model the bottom value to automatically set the layer level

80

Parameters:
 layer_list (list) – te list of qgis layers

--

add_layer_to_group(layer_name, group_id)oatlib.sensor.Sensor.ts_zeros

Load layer from sqlite and add to lake group

Parameters:
 layer_name (str) – the name oft he layer
 group_id (int) – the id oft he group

--

add_table_to_group (table_name, group_id)oatlib.sensor.Sensor.ts_zeros

Load layer from sqlite and add to lake group

Parameters:
 table_name (str) – the name oft he table
 group_id (int) – the id oft he group

--

execute_query(query, params=None)oatlib.sensor.Sensor.ts_zeros

execute query on database

Parameters:
 query (str) – the query string
 params (list) – list of parameter values

--

dd_lake_to_table(params))oatlib.sensor.Sensor.ts_zeros

Add new lake to sqlite table

Parameters: params (dict) – dictionary of lake parameters from the interface

--

81

create_new_lak_layer(new_table_name,base_table_name,layer_id=0)oatlib.sensor.Sensor.ts_zero

s

Create a new lak layer based on model layers & the new table & copy the data

from base layer

Parameters:

 new_table_name (str) – the name oft he new lake table
 base_table_name (int) – the table name of base layer
 layer_id (int) – the layer id

--

__check_table ()oatlib.sensor.Sensor.ts_zeros

Check if lak table exists

--

create_sp_lak_table ()oatlib.sensor.Sensor.ts_zeros

create the stress period lake table

--

message_to_gui(title, message='')oatlib.sensor.Sensor.ts_zeros

Send a messag to the use with an alert box

Parameters:

 title (str) – the title oft he alert
 message (int) – the message tob e shown

82

Appendix C Programmer documentation for Solute Transport

The code organization for the solute transport section reflects the one used for groundwater

flow modelling (section above). In particular, the link among different Python files is

summarized in the diagram below. Also in this case, an extensive use of Flopy library has been

included, to write input files for the code MT3DMS and to read its binary outputs.

The only exception differing from this structure is the part devoted to run USB (Unsaturated

Mass Balance), since this module has been specifically developed within FREEWAT plugin,

without the inclusion of any external code. For this reason, the USB module is separately

documented with more detail in next Appendix.

83

Appendix D Programmer Documentation for USB module

USB module is a Python code integrated within FREEWAT plugin. The following schematic

summarizes the USB architecture:

The core of USB module is the Python object ModflowUSB, whose details are reported in the

following section.

ModflowUSB object

Attributes summary table

Variable Name Type/Size Description

model Input/Python object FloPy model object to which this package

will be linked.

uzf Input/Python object FloPy UZF Package object to which this

package will be linked

celldim Input/Scalar Dimension of the model grid (in units of

length selected for the model)

cell_dict Input/Python

dictionary

Dictionary of cells where solute source is

present.

Keys are cell id; values are a list [row,col],

where row and col are row and column of

that cell, respectively

mu_dict Input/Python Dictionary of 1st-order degradation factor.

84

dictionary Keys are cell id, values are the degradation

factor for cell corresponding to cell id.

cin_dict Input/Python

dictionary

Dictionary of concentration at ground

surface. Keys are stress periods (0-based);

values are an array of shape = (nrow, ncol).

cout_dict Output/Python

dictionary

Dictionary of concentration at water table.

Keys are stress periods (0-based); values

are an array of shape = (nrow, ncol).

Methods

The ModflowUsb object consists of 3 methods: write_uzf_gaeges, solute_fluxout, run_model.

Explanation is provided below for each method.

write_uzf_gages

This method takes as input the model structure and the cells of the model grid where the source

is present. Therefore, it calls and run the model including in UZF package the ability to write

detailed output files for the cells of interest. In this way, for each of these cells, information on

unsaturated thickness, infiltration rate at the ground surface and recharge flux at the water

table are saved. They will be used in next steps of the process.

Input: the ModflowUsb object itself (self)

Output: no variable in output. At the end of the process new *.uzf output files are written, one

for each cell representing the contaminated zone. They are named modelname.uzfN, where N

is the cell id.

Execution scheme:

 retrieve UZF package of Modflow model and relative information

 retrieve the cells of interest, and their cell id

 write a gage file for each cell

 update MODFLOW .NAM file and run the MODFLOW model again

solute_fluxout

This method solve the mass balance difference equation (equation (2) in Section 2.1), for a

given cell and for a given stress period.

Input:

1. dt, stress period length

2. cin, concentration at the ground surface

3. qin, infiltration flux at the ground surface

4. z, unsaturated thickness

85

5. th, porosity

6. mu, degradation factor

7. cold, concentration at the water table computed at the previous stress period

Output:

1. cout, concentration at the water table computed for the current stress period

Execution scheme:

 Use inputs to compute the concentration, applying formula (2) reported in Section 2.1

run_model

Run the mass balance calculation for the entire model.

Input:

1. self, the ModflowUsb object and its attributes

2. Nsteps, list of number of time steps, for each stress periods

3. SPlength, list of stress period lengths, for each stress periods

Output:

2. cout_dict, Python dictionary of concentration at water table.

Execution scheme:

 retrieve data from UZF output files

 for each cell and for each stress period, call the method solute_fluxout to compute the

output

 save the output in the dictionary

86

Appendix E Programmer Documentation for Water Management

Module

Water Management module consists of a series of Python objects to run the FARM PROCESS

capabilities of MODFLOW-OWHM code. The following schematic summarizes the code

architecture:

The core of this module is the Python object ModflowFmp, whose details are reported in the

following section. This object is called by the method buildFmp defined in the main Python file

createModelBuilder.py. Method buildFmp takes inputs from the QGIS GUI objects and

transforms them in the input needed by ModflowFmp object.

ModflowFmp object

Attributes summary table

For details on each attribute, the reader is referred to FarmProcess and MODFLOW-OWHM

User’s Manuals (Schmid et al., 2006; Schmid et al., 2009; Hanson et al., 2014).

Variable Name Type/Size Description

model Input/Python object FloPy model object to which this package

will be linked.

npfwl Input/integer Number of farm well parameters

87

mxl Input/integer Maximum number of parameter farm

wells

mxactw Input/integer Maximum number of active farm wells

nfarms Input/integer Maximum number of water-balance

subregions (WDUs)

ncrops Input/integer Number of crop types

nsoils Input/integer Number of soil types

ifrmfl Input/integer Variable Farm ID flag

irtfl Input/integer Root depth flag

icufl Input/integer Consumptive-use flag

iftefl Input/integer Fraction-of-transpiration-and-

evaporation-of-crop-consumptive-use

flag

iieswfl Input/integer Fraction-of-inefficiency-losses-to-SW-

runoff flag

ieffl Input/integer Efficiency Flag

iebfl Input/integer Efficiency Behavior Flag

irotfl Input/integer Crop rotation flag

ideffl Input/integer Deficiency Scenario flag

iben Input/integer Crop-Benefits Flag

icost Input/integer Water-Cost Coefficients Flag

iallotgw Input/integer Variable Groundwater Allotment flag

iccfl Input/integer Concept used for the approximation of ET-

fluxes with changing head

inrdfl Input/integer Non-Routed Surface-Water Delivery Flag

mxnrdt Input/integer Maximum number of non-routed delivery

types

isrdfl Input/integer Semi-Routed Surface-Water Delivery Flag

irdfl Input/integer Routed Surface-Water Delivery Flag

isrrfl Input/integer Semi-Routed Surface-Water Runoff

Return Flow Flag

Irrfl Input/integer Routed Surface-Water Runoff Return Flow

Flag

iallotsw Input/integer Surface-water allotment flag

pclose Input/integer User specified closure criterion for

88

simulated diversions into diversion

segments if prior appropriation is chosen

ifwlcb Input/integer Farm well budget print flags

ifnrcb Input/integer Farm net recharge budget print flags

isdpfl Input/integer Farm supply and demand print flags

ifbpfl Input/integer Farm budget print flags

ietpfl Input/integer Farm Total Evapotranspiration print flags

irtpfl Input/integer Optional routing information print flag

iopfl Input/integer Optional print settings if Acreage-

Optimization is chosen

ipapfl Input/integer Optional print settings if Prior

Appropriation is chosen

itmp Input/integer Flag and counter

gse Input/array Array (nrow, ncol) of the ground surface

elevation

farmwells Input/Python

dictionary

Dictionary of farm wells.

Keys are stress periods; values are a list

[Layer Row Column Farm-Well-ID Farm-ID

QMAX]

Fid Input/array Array (nrow, ncol) of WDU id

Ofe Input/list List of OFE for each WDU

farmcost Input/Python

dictionary

Dictionary of farm costs.

Keys are farm id; values are a list of water

delivery costs

nonrouted Input/Python

dictionary

Dictionary of non-routed deliveries.

Keys are farm id; values are a list [FarmID,

NRDV , NRDR, NRDU]

allotsw Input/Python

dictionary

Dictionary of surface water allotments.

Keys are farm id; values are the sw

allotment.

allotgw Input/Python

dictionary

Dictionary of groundwater allotments.

Keys are farm id; values are the gw

allotment.

srswlocation Input/Python

dictionary

Dictionary of semi-routed deliveries.

Keys are farm id; values are the list [Farm-

ID Row Column Segment Reach]

89

Sid Input/array Array (nrow, ncol) of soils id

soillist Input/Python

dictionary

Dictionary of soil type.

Keys are soil id; values are the list [soil

name, capillary fringe]

cid Input/array Array (nrow, ncol) of crops id

Root Input/Python

dictionary

Dictionary of root depth.

Keys are stress periods; values are the list

of root depth for each crop

Psi Input/Python

dictionary

Dictionary of potentiometric heads for

root uptake process

Keys are soil id; values are [PSI1 to PSI4]

cropevap Input/Python

dictionary

Dictionary of crop evaporation fraction.

Keys are crop id; values are the list [FTR,

FEP, FEI]

cropfies Input/Python

dictionary

Dictionary of crop inefficiency fractions.

Keys are crop id; values are the list

[FIESWP, FIESWI]

cropirr Input/Python

dictionary

Dictionary of crop non-irrigation flag.

Keys are crop id; values are NONIRR flag

cropcost Input/Python

dictionary

Dictionary of crop profit parameters

Keys are crop id; values are the list [WPF-

Slope, WPF-Int , Crop-Price]

ifallow Input/Python

dictionary

Dictionary of crop fallow flag.

Keys are crop id; values are IFALLOW flag

Kc Input/Python

dictionary

Dictionary of crop coefficients

Keys are stress periods; values are the list

of Kc for each crop

etref Input/Python

dictionary

Dictionary of reference

evapotranspiration.

Keys are stress periods; values are the

array (nrow,ncol) of reference ET.

precip Input/list List of rainfall rate, for each stress period.

Methods

The ModflowFmp object consists of 2 methods: write_in_files, write_file.

Explanation is provided below for each method.

90

write_in_files

This method takes as input the object attributes and write the external text files (*.in)

that are called by file input writer.

Input: the ModflowFmp object itself (self)

Output: no variable in output. At the end of the process *.in text files are written

under the subfolder DATA_FMP, created within the model working folder.

Execution scheme:

 retrieve the flags and the input passed to ModflowFmp

 write the text input files, according to the flag specification.

write_file

This method write the input file “modelname.fmp” needed by MODFLOW-OWHM to

run the FarmProcess capabilities. The file is written within the model working folder.

Input: the ModflowFmp object itself (self)

Output: no variable in output. At the end of the process *.fmp text file is written

under the model working folder.

Execution scheme:

 retrieve the flags and the input passed to ModflowFmp

 write the *.fmp according to the flags setting.

91

Appendix F Programmer documentation for AkkaGIS

AkvaGIS code overview

Overview

The AkvaGIS plugin enhances QGIS with hydrochemical and hydrogeological data processing

and analysis. All reference and measurement data is stored in a SQLite database.

The code has been designed following the Object Oriented paradigm. A large effort has been

put on avoiding code repetition in order to reduce errors and improve the maintainability

This entry point for the QGIS plugin is the akvaGIS.akvaGIS class. It takes care of adding toolbar

buttons to QGIS and linking them to their respective functionality.

The drop-down menu has the following look

The functionality behind each button is called a ‘Feature’. Each Feature, with baseclass

feature.AKFeature.AKFeature can either contain other (sub-)Features or/and a form.

There are 3 groups of features:

• General Features. These are features that deal with the AkvaGIS SQLite database and

the related QGIS layers, like create/open/close AkvaGIS database. These features

correspond to the group of black colored based toolbar buttons.

• Hydrochemical Features. These features manage the selection of geochemical

measurements. Different types of plots and maps can be created using the selected

92

samples and measurements. These features correspond to the group of blue colored

based toolbar buttons

• Hydrogeological Features. These features manage the selection of hydrogeological

measurements to draw plots and maps. These features correspond to the group of

green colored based toolbar buttons.

From the hydrochemical and hydrogeological features there are some to generate plots and

others to generate maps:

• These are the features to generate plots:

• And these are the features to generate maps:

All database specific settings are managed by the AKSettings.AKSettings class

All the presented forms are based on the form.AKForm.AKForm class.

All the models used in the (table-)views can be found in the model module.

Third Party Libraries

93

AkvaGIS uses different third party libraries. Some of them are distributed with the plugin

(inside the externa 12 module) and others should already be installed in the Python

distribution for a correct behaviour of the tool (dependencies).

The following third party libraries are provided with the plugin distribution:

• ChemPlotLib 1.0: A GPL licensed library that draws the chemical plots provided in the

plugin: Stiff diagram, Piper diagrams and SAR plots but also standard plots as 1D line

plots. It relies on Matplotlib 1.5 and. ChemPlotLib offers extensive customization of

plots, title labels, axis, edges sizes and colours can be chosen by users.

• Openpyxl2.3 (https://openpyxl.readthedocs.io): A MIT licensed library for reading and

writing Excel 2010 xlsx/xlsm/xltx/xltm files.AkvaGIS uses it to export data to MSExcel

spreadsheets format.

• Odfpy 1.3 (https://pypi.python.org/pypi/odfpy): A library to read and write

OpenDocument v. 1.2 files. AkvaGIS uses it to export data to ODF spreadsheets format.

• Pyexcel 0.2 (https://pyexcel.readthedocs.io): A BSD licensed Python Wrapper that

provides one API for reading, manipulating and writing data in csv, ods, xls, xlsx and xlsm

files. AkvaGIS uses it to export data to different spreadsheets formats.

The dependencies of the lib are:

• PyQt4: The Qt version 4 Python wrapper.

• Matplotlib 1.5 (http://matplotlib.org/): A Python 2D plotting library which produces

publication quality figures in a variety of hardcopy formats and interactive environments

across platforms.

AkvaGis module

copyright Copyright (C) 2015 IDAEA-CSIC

authors L.M. de Vries, A. Nardi, E. Vázquez Suñé. Velasco Mansilla

contact enric.vazquez@idaea.csic.es

license GPL General Public License, version 2 or any later version

(http://opensource.org/licenses/GPL-2.0)

class akvaGIS (iface)

94

The AkvaGIS plugin enhances QGIS with hydrochemical and hydrogeological data processing

and analysis. All reference and measurement data is stored in a SQLite database.

This entry point for the QGIS plugin is the akvaGIS.akvaGIS class. It takes care of adding toolbar

buttons to QGIS and linking them to their respective functionality. The functionality behind each

button is called a ‘Feature’. Each Feature, with baseclass feature.AKFeature.AKFeature can

either contain other (sub-)Features or/and a form.

There are 3 groups of features:

•General Features. These are features that deal with the AkvaGIS SQLite database and

the related QGIS layers, like create/open/close AkvaGIS database.

•Hydrochemical Features. These features manage the selection of geochemical

measurements. Different types of plots and maps can be created using the selected

samples and measurements.

•Hydrogeological Features. These features manage the selection of hydrogeological

measurements to draw plots and maps.

All database specific settings are managed by the AKSettings.AKSettings class

All the presented forms are based on the form.AKForm.AKForm class.

All the models used in the (table-)views can be found in the model module.

__init__(iface)

Parameters iface (QgsInterface) – An interface instance that will be passed to this

class which provides the hook by which you can manipulate the QGIS application at run

time.

add_feature (feature=None, parent=None, enabled=False)

Create a QAction and use it for the menu entry and for the toolbar button.

Parameters

• feature (AKFeature) – The feature provides text, icon and functionality

• parent (QObject) – The parent used for the creation of QAction

• enabled (bool) – Is enabled on startup or not

95

initAkvaGIS(iface)

initGui ()

Add all the menu entries and toolbar icons to QGIS.

unload ()

Removes the plugin menu item and icon from QGIS GUI.

AkvaGIS Packages and Modules

copyright Copyright (C) 2015 IDAEA-CSIC

authors L.M. de Vries, A. Nardi, E. Vázquez Suñé. Velasco Mansilla

contact enric.vazquez@idaea.csic.es

license GPL General Public License, version 2 or any later version

(http://opensource.org/licenses/GPL-2.0)

AKSettings module

class AKSettings (parent=None)

Bases: PyQt4.QtCore.QObject

This class provides the functionality to open and close an AkvaGIS SQLite database. It also takes

care of the creation and deletion of related QGIS layers.

__init__(parent=None)

If a file called “userSettings.txt” exists in the same directory as this source file, it is used to

retrieve the most recently opened database. If not, it is created. The variable self.currentDB

points to the database if it is opened, otherwise it is None.

closeCurrentDB ()

getActiveLayerDBPath ()

96

getCurrentDB ()

getLayerDBPath (layer)

Returns path to database directly from the provided layer.

getUserSettings (settingName)

Retrieve settings, like the most recently opened database from a text file.

openCurrentDB (dbFilePath)

Opens a database and assign it to self.currentDB

openSqliteDatabaseFile (fileName)

setUserSettings (settingName, settingValue)

Save settings, like the most recently opened database in a text file.

verifyAkvaGISDB ()

Verify if the opened SQLite file is really a AkvaGIS database. Returns True or False.

class TABLES

Any references to actual database tables use the constants defined here. If a table name

changes, it only requires an update here.

CAMPAIGNS = ‘Campaigns’

CHEMMEASUREMENTS = ‘HydrochemicalMeasurements’

CHEMNORMPARAMS = ‘HydrochemicalNormativeParameters’

CHEMPARAMS = ‘ListHydrochemicalParametersCode’

CHEMSAMPLES = ‘HydrochemicalSamples’

CITATIONS = ‘Citations’

HYDROMEASUREMENTS = ‘HydrogeologicalPointsMeasurements’

HYDROPARAMS = ‘ListHydrogeologicalParametersCode’

HYDROSAMPLES = ‘HydrogeologicalPointsObservations’

HYDROUNITS = ‘HydrogeologicalUnits’

97

HYDROUNITSAPPEARANCE = ‘HydrogeologicalUnitsApparence’

L_ACTIVITYTYPE = ‘ListActivityType’

L_CAMPAIGNTYPE = ‘ListCampaignType’

L_FUNCTIONCODE = ‘ListFunctionCode’

L_GEOMSRCTYPE = ‘ListGeometrySourceType’

L_HYDROUNITTYPE = ‘ListHydroUnitType’

L_POINTTYPE = ‘ListPointType’

L_RESULTSNATURECODE = ‘ListResultsNatureType’

L_RESULTSQUALITYCODE = ‘ListResultsQualityCode’

L_STATUSCODE = ‘ListStatusCode’

L_UNITOFMEASUREMENTS = ‘ListUnitOfMeasurements’

NORMATIVES = ‘Normatives’

POINTS = ‘Points’

PROCESSES = ‘Processes’

PROJECTS = ‘Projects’

REFSYSTEMS = ‘ReferenceSystems’

RESPONSIBLES = ‘ResponsibleParties’

SAVED_QUERY = ‘AK_SavedQueries’

SAVED_QUERY_HYDRO = ‘AK_SavedQueriesHydro’

SAVED_QUERY_POINTS = ‘AK_SavedQueryPoints’

SAVED_QUERY_POINTS_HYDRO = ‘AK_SavedQueryPointsHydro’

SAVED_QUERY_SAMPLES = ‘AK_SavedQuerySamples’

SAVED_QUERY_SAMPLES_HYDRO = ‘AK_SavedQuerySamplesHydro’

TIMEMETADATA = ‘TimeMetadata’

WELLS = ‘Wells’

WELLS_HYDROUNIT = ‘WellsHydrogeologicalUnit’

98

Feature package

Subpackages

Feautures.measurements package

Submodules

feature.measurements.AKFeatureMeasurements module

class AKFeatureMeasurements (settings, iface, windowTitle=u’Query Measurements’, parent=

None)

Bases: feature.AKFeature.AKFeature

Provides a form to select individual measurements. The selection is for the selected query and

a specific set of parameters that can either be selected manually or imposed by the caller of

this class. If the measurement value is outside the detection limit range, the limit itself is

multiplied by factor that can be set for each base parameter in the listview. Different

multiplication factors can be applied if the value is below of above the detection limit. If the

value is the result of this multiplication, the column isCalculated will be set to true.

This sub-feature is used by many of the plot and map features.

__init__(settings, iface, windowTitle=u’Query Measurements’, parent=None)

activateResults()

clearAllAttributes()

createParameterRow(tableWidget, values)

deActivateResults()

findRowOfParameter(widget, column, value)

getSelectedParameters()

hideColumnsIfNecessary()

imposeParameters(parameterInfo)

initialize()

loadAllParametersView()

loadAllParams(query)

loadParameterViews()

moveParameter(sourceWidget, destinationWidget, rowNumber)

99

onAddSelectedParameters()

onClose()

onDeselectAllResults()

onLoadQueryView()

onLvQueriesSelectionChanged()

onNext()

onRemoveSelectedParameters()

onRunQuery()

onSelectAllResults()

updateQueryButton()

nextForm

feature.measurements.AKFeatureMeasurementsChem module

class AKFeatureMeasurementsChem (settings, iface, windowTitle=u’Query Measurements’,

parent= None)

Bases: feature.measurements.AKFeatureMeasurements.AKFeatureMeasurements

Make sure that all the queries used by AKFeatureMeasurements reference to the

hydrochemical tables.

__init__(settings, iface, windowTitle=u’Query Measurements’, parent=None)

defineSQLQueries ()

feature.measurements.AKFeatureMeasurementsHydro module

class AKFeatureMeasurementsHydro (settings, iface, windowTitle=u’Query Measurements’,

parent= None)

Bases: feature.measurements.AKFeatureMeasurements.AKFeatureMeasurements

100

Make sure that all the queries used by AKFeatureMeasurements reference to the

hydrogeological tables.

__init__(settings, iface, windowTitle=u’Query Measurements’, parent=None)

defineSQLQueries()

hideColumnsIfNecessary()

Module contents

feature.results package

Submodules

feature.results.AKFeatureResults module

 class AKFeatureResults (settings, iface, windowTitle=’‘, parent=None)

Bases: feature.AKFeature.AKFeature

This is the base class for the results sub-feature. This feature adds the selected measurements

to a new model grouped by sample. Depending on the ResultsFeature-type post-processing is

applied to the new model. Some ResultsFeatures require the sample results grouped by

parameter, where the values are stored as timeseries. The function storeDataInTimeSeries()

takes care of that.

__init__(settings, iface, windowTitle=’‘, parent=None)

addValidColumn(paramInfo, parameterOrder)

calcScaledCoordinates(coordinates, scaleX, scaleY)

calcTranslatedCoordinatesToPoints(pointLayer, pointIds, coordinates)

createUniqueSeriesId(pointId, parameterId)

101

customizeForm()

getStatistics(values)

initialize()

onActionClicked()

onClose()

onSaveTable()

postProcessModelData(paramInfo, parameterOrder)

retrieveLocalStiffCoordinates(valuesByPoint, distY)

retrieveStiffValues(valuesByPoint)

setModel(newModel=None)

showData(hideMeasurements=False)

storeDataInTimeSeries()

feature.results.AKFeatureResultsEasyQuim module

class AKFeatureResultsEasyQuim(settings, iface, parent=None)

Bases: feature.results.AKFeatureResultsIonicBalance.AKFeatureResultsIonicBalance

This feature provides the functionality for the second EasyQuim Export form.

__init__(settings, iface, parent=None)

customizeForm()

onActionClicked()

writeEasyQuimReport(model)

feature.results.AKFeatureResultsExcelMix module

class AKFeatureResultsExcelMix(settings, iface, parent=None)

Bases: feature.results.AKFeatureResults.AKFeatureResults

102

This feature provides the functionality for the second Mix Export form.

__init__(settings, iface, parent=None)

customizeForm()

fillMixWidget()

initialize()

onActionClicked()

postProcessModelData(paramInfo, parameterOrder)

writeMixExcel(model, timeSeriesData)

feature.results.AKFeatureResultsIonicBalance module

class AKFeatureResultsIonicBalance(settings, iface, windowTitle=’‘, parent=None)

Bases: feature.results.AKFeatureResults.AKFeatureResults

This feature provides the functionality for the second Ionic Balance form.

__init__(settings, iface, windowTitle=’‘, parent=None)

addValidColumn(paramInfo, parameterOrder)

customizeForm()

initialize()

loadData(model, dataOrder, data)

loadStyles(textdoc)

onActionClicked()

postProcessModelData(paramInfo, parameterOrder)

writeIonicBalanceReport(model, textdoc)

103

feature.results.AKFeatureResultsMap module

class AKFeatureResultsMap(settings, iface, windowTitle=’Map Results’, parent=None)

Bases: feature.results.AKFeatureResults.AKFeatureResults

This feature provides the functionality for the second form to create maps.

__init__(settings, iface, windowTitle=’Map Results’, parent=None)

customizeForm()

getTargetField()

getTargetIndex(targetField)

initialize(showTable=True)

onActionClicked()

postProcessModelData(paramInfo={}, parameterOrder=[])

feature.results.AKFeatureResultsMapChem module

class AKFeatureResultsMapChem(settings, iface, windowTitle=’Map Results’, parent=None)

Bases: feature.results.AKFeatureResultsMap.AKFeatureResultsMap

This feature provides the functionality for the second form to create hydrochemical maps.

__init__(settings, iface, windowTitle=’Map Results’, parent=None)

feature.results.AKFeatureResultsMapHydro module

class AKFeatureResultsMapHydro(settings, iface, windowTitle=’Map Results’, parent=None)

Bases: feature.results.AKFeatureResultsMap.AKFeatureResultsMap

104

This feature provides the functionality for the second form to create hydrogeological maps.

__init__(settings, iface, windowTitle=’Map Results’, parent=None)

showData(hideMeasurements=False)

AkvaGIS Code Documentation, Release 1.0.0

feature.results.AKFeatureResultsMapNormative module

class AKFeatureResultsMapNormative(settings, iface, windowTitle=’Normative Map

Results’,parent=None)

Bases: feature.results.AKFeatureResultsMapChem.AKFeatureResultsMapChem

This feature provides the functionality for the second form to create normative maps.

__init__(settings, iface, windowTitle=’Normative Map Results’, parent=None)

calcParamLimits(layers, targetFieldIndex)

defineSQLQueries()

finalizeLayers(newlayers, targetField, groupNode, paramLimits=None, addLegend=True)

getNormLimits(normativeId, paramId)

feature.results.AKFeatureResultsMapStiff module

class AKFeatureResultsMapStiff(settings, iface, windowTitle=’Stiff Chart Map Results’,

parent=None)

Bases: feature.results.AKFeatureResultsMapChem.AKFeatureResultsMapChem

105

This feature provides the functionality for the second form to create stiff maps.

__init__(settings, iface, windowTitle=’Stiff Chart Map Results’, parent=None)

createLine(centerX, centerY, distY)

createPolygon(coordinates, attributes)

createStiffPlot(pointLayer, pointId, coordinates, attributes, distY)

customizeForm()

initialize()

onActionClicked()

postProcessModelData(paramInfo, parameterOrder)

feature.results.AKFeatureResultsPiper module

class AKFeatureResultsPiper(settings, iface, parent=None)

Bases: feature.results.AKFeatureResultsPlot.AKFeatureResultsPlot

This feature provides the functionality for the second form to create piper plots.

__init__(settings, iface, parent=None)

customizeForm()

initialize()

onActionClicked()

postProcessModelData(paramInfo, parameterOrder)

feature.results.AKFeatureResultsPlot module

class AKFeatureResultsPlot(settings, iface, plotClass, windowTitle=’‘, parent=None)

106

Bases: feature.results.AKFeatureResults.AKFeatureResults

This feature provides the base functionality for the second form to create plots.

__init__(settings, iface, plotClass, windowTitle=’‘, parent=None)

customizeForm()

feature.results.AKFeatureResultsSAR module

class AKFeatureResultsSAR(settings, iface, parent=None)

Bases: feature.results.AKFeatureResultsPlot.AKFeatureResultsPlot

This feature provides the functionality for the second form to create SAR plots.

__init__(settings, iface, parent=None)

customizeForm()

initialize()

onActionClicked()

postProcessModelData(paramInfo, parameterOrder)

feature.results.AKFeatureResultsSBD module

class AKFeatureResultsSBD(settings, iface, parent=None)

Bases: feature.results.AKFeatureResultsPlot.AKFeatureResultsPlot

107

This feature provides the functionality for the second form to create SBD plots.

__init__(settings, iface, parent=None)

initialize()

onActionClicked()

postProcessModelData(paramInfo, parameterOrder)

feature.results.AKFeatureResultsStatQuimet module

class AKFeatureResultsStatQuimet(settings, iface, parent=None)

Bases: feature.results.AKFeatureResults.AKFeatureResults

This feature provides the functionality for the second form to export data for StatQuimet.

__init__(settings, iface, parent=None)

customizeForm()

initialize()

onActionClicked()

postProcessModelData(paramInfo, parameterOrder)

writeStatQuimetExcel(model, timeSeriesData)

feature.results.AKFeatureResultsStiff module

class AKFeatureResultsStiff(settings, iface, parent=None)

Bases: feature.results.AKFeatureResultsPlot.AKFeatureResultsPlot

108

This feature provides the functionality for the second form to create stiff plots.

__init__(settings, iface, parent=None)

customizeForm()

initialize()

onActionClicked()

postProcessModelData(paramInfo, parameterOrder)

feature.results.AKFeatureResultsTimePlot module

class AKFeatureResultsTimePlot(settings, iface, windowTitle=’TimePlot Results’, parent=None)

Bases: feature.results.AKFeatureResultsPlot.AKFeatureResultsPlot

This feature provides the functionality for the second form to create time plots.

__init__(settings, iface, windowTitle=’TimePlot Results’, parent=None)

customizeForm()

initialize()

onActionClicked()

postProcessModelData(paramInfo, parameterOrder)

Module contents

Submodules

feature.AKFeature module

class AKFeature(iface, parent=None)

Bases: PyQt4.QtCore.QObject

Base Class for AkvaGIS Features

109

Each AKFeature has the following (optional) functionality:

• initialize()

• run()

This class contains common functionality like:

• saving table data to spreadsheet files

• selecting all/first rows in table views

• generate new file names

• addding QGIS vector layers

__init__(iface, parent=None)

addLabel(layer, placement=0)

addLayerToLayersWindow(layer, parentNode=None)

addVectorLayer(layerType, name, projection, fields=[], labelPlacement=1)

closeDatabase()

confirmClosing()

confirmReplacement()

finalizeLayer(newLayer, targetField, groupNode, paramLimits=None, labels=[],

addLegend=True)

finalizeLayers(newlayers, targetField, groupNode, paramLimits=None, labels=[],

addLegend=True)

generateNewName(base)

getProjection(layer)

groupExists(groupName)

run()

saveTable(form, headers, contents)

selectAllInView(view, selectMode)

selectFirstInView(view)

feature.AKFeatureCloseDB module

110

class AKFeatureCloseDB(settings, iface, dialogType, toolbarActions, parent=None)

Bases: feature.AKFeature.AKFeature

__init__(settings, iface, dialogType, toolbarActions, parent=None)

enableAkvaGIS(setEnabled)

initialize()

updateButtons()

feature.AKFeatureCreateDB module

class AKFeatureCreateDB(settings, iface, dialogType, toolbarActions, parent=None)

Bases: feature.AKFeature.AKFeature

This feature takes care of creating and loading AkvaGIS databases. When a database is loaded,

all the relevant tables are exposed to QGIS by adding layers.

__init__(settings, iface, dialogType, toolbarActions, parent=None)

addDBTableAsLayer(groupNode, layerName, tableName, geometryColumn)

addDelegatesToLayer()

addLayer(parentNode, tableName)

addNodes(parentNode, sourceItem)

createLayers()

enableAkvaGIS(setEnabled)

initialize()

onBrowse()

onClose()

onCreate()

onOpen()

111

updateButtons()

feature.AKFeatureCustomChart module

class AKFeatureCustomChart(settings, iface, windowTitle=’‘, parent=None)

Bases: feature.AKFeature.AKFeature

This feature takes care of looking up additional information in the database for imposed

parameters.

__init__(settings, iface, windowTitle=’‘, parent=None)

addParameterDetails()

defineSQLQueries()

initialize()

onNextForm(measurementsModel)

feature.AKFeatureCustomChartChem module

class AKFeatureCustomChartChem(settings, iface, windowTitle=’‘, parent=None)

Bases: feature.AKFeatureCustomChart.AKFeatureCustomChart

This base class for all features that are run a query of geochemical measurements.

__init__(settings, iface, windowTitle=’‘, parent=None)

defineSQLQueries()

feature.AKFeatureCustomChartHydro module

class AKFeatureCustomChartHydro(settings, iface, windowTitle=’‘, parent=None)

Bases: feature.AKFeatureCustomChart.AKFeatureCustomChart

__init__(settings, iface, windowTitle=’‘, parent=None)

112

feature.AKFeatureDBManagement module

class AKFeatureDBManagement(settings, iface, parent=None)

Bases: feature.AKFeature.AKFeature

__init__(settings, iface, parent=None)

defineSQLQueries()

getPointAndUpdateSamples()

getPointData()

getSampleDetails(selModel)

initialize()

loadDataFromFile(fileName, tableName, fieldSeparator, skipFirstLine,

fieldsContainQuotes,needToInsertValues=False, insertValues=[])

loadMeasurementData(sampleId)

loadMeasurementsFromFile()

loadSamplesFromFile()

onClose()

openEditCampaignForm()

openEditMeasurementsForm()

openEditPointForm()

openEditSampleForm()

openEditTableForm(tableName)

updateMeasurements(selected, deselected)

updateSamples(row)

feature.AKFeatureEasyQuim module

class AKFeatureEasyQuim(settings, iface, parent=None)

113

Bases: feature.AKFeatureCustomChartChem.AKFeatureCustomChartChem

Can be used to export the geochemical measurements for the EasyQuim program

__init__(settings, iface, parent=None)

feature.AKFeatureExcelMix module

class AKFeatureExcelMix(settings, iface, parent=None)

Bases: feature.AKFeatureCustomChartChem.AKFeatureCustomChartChem

Can be used to export the geochemical measurements for the MIX program. The user needs to

decide which of the samples are end members before running the export.

__init__(settings, iface, parent=None)

feature.AKFeatureIonicBalance module

class AKFeatureIonicBalance(settings, iface, parent=None)

Bases: feature.AKFeatureCustomChartChem.AKFeatureCustomChartChem

This feature exports a table with ionic balance information.

__init__(settings, iface, parent=None)

feature.AKFeatureMapChem module

class AKFeatureMapChem(settings, iface, parent=None)

Bases: feature.AKFeatureCustomChartChem.AKFeatureCustomChartChem

114

This feature generates map with hydrochemical measurements information. The user needs to

decide if he/she is interested in the first,last,average,minimum or maximum value of all the

values for a specific parameter.

__init__(settings, iface, parent=None)

feature.AKFeatureMapHydro module

class AKFeatureMapHydro(settings, iface, parent=None)

Bases: feature.AKFeatureCustomChartHydro.AKFeatureCustomChartHydro

This feature generates maps for the selected points and parameters

__init__(settings, iface, parent=None)

feature.AKFeatureMapHydroSurface module

class AKFeatureMapHydroSurface(settings, iface, parent=None)

Bases: feature.AKFeatureCustomChartHydro.AKFeatureCustomChartHydro

This features generates maps with the top and bottom heights for the selected

hydrogeological unit

__init__(settings, iface, parent=None)

createMap(rowIndex)

defineSQLQueries()

getAllUnitPoints(unitId)

getHydroUnitData()

initialize()

onClose()

115

onUnitChanged()

onUnitSelected()

feature.AKFeatureMapNormative module

class AKFeatureMapNormative(settings, iface, parent=None)

Bases: feature.AKFeatureCustomChartChem.AKFeatureCustomChartChem

__init__(settings, iface, parent=None)

defineSQLQueries()

getNormativeData()

getNormativeParameters(normativeId)

initialize()

onNormativeChanged()

onNormativeSelected()

feature.AKFeatureMapStiff module

class AKFeatureMapStiff(settings, iface, parent=None)

Bases: feature.AKFeatureCustomChartChem.AKFeatureCustomChartChem

Generate a map with Stiff diagrams. The user first selects the measurements to use and then

the general Stiff diagram properties.

__init__(settings, iface, parent=None)

feature.AKFeatureMapPiper module

class AKFeaturePiper(settings, iface, parent=None)

Bases: feature.AKFeatureCustomChartChem.AKFeatureCustomChartChem

116

Generate a Piper plot with the selected measurements.

__init__(settings, iface, parent=None)

feature.AKFeatureMapSAR module

class AKFeatureSAR(settings, iface, parent=None)

Bases: feature.AKFeatureCustomChartChem.AKFeatureCustomChartChem

Generate a SAR plot with the selected measurements.

__init__(settings, iface, parent=None)

feature.AKFeatureMapSBD module

class AKFeatureSBD(settings, iface, parent=None)

Bases: feature.AKFeatureCustomChartChem.AKFeatureCustomChartChem

Generate an SBD plot with the selected measurements.

__init__(settings, iface, parent=None)

feature.AKFeatureSamples module

class AKFeatureSamples(settings, iface, parent=None)

Bases: feature.AKFeature.AKFeature

This feature takes care of storing a ‘query’: a selection of points for a specific date-range. Within

this selection, specific samples can be deactivated to not form part of the query. Filter

functionality is added so it is easier to activate or deactivate a specific set of samples.

117

__init__(settings, iface, parent=None)

activateResults()

clearAllAttributes()

deActivateResults()

deleteStoredQueryDetails()

getIdsOfSelectedPointsInLayer(cLayer)

initialize()

loadFilterPointList()

onAddQuery()

onCampaignChanged()

onCampaignEnabled(checkState)

onClose()

onDateRangeChanged()

onDateRangeEnabled(checkState)

onDeselectAllPoints()

onDeselectAllResults()

onFilterPointsChanged()

onLoadQueryView()

onLvQueriesSelectionChanged()

onPointsEnabled(checkState)

onQuery()

onRefreshSpatialPoints()

onRemoveAllQuery()

onRemoveQuery()

onSelectAllPoints()

onSelectAllResults()

onSpatialSelectionChanged()

updateEditQueryPanel()

118

updateFilters()

updateTbSamples()

feature.AKFeatureSamplesChemistry module

class AKFeatureSamplesChemistry(settings, iface, parent=None)

Bases: feature.AKFeatureSamples.AKFeatureSamples

Make sure that all the queries used by AKFeatureSamples reference to the hydrochemical

tables.

__init__(settings, iface, parent=None)

defineSQLQueries()

feature.AKFeatureSamplesHydrogeology module

class AKFeatureSamplesHydrogeology(settings, iface, parent=None)

Bases: feature.AKFeatureSamples.AKFeatureSamples

Make sure that all the queries used by AKFeatureSamples reference to the hydrogeological

tables

__init__(settings, iface, parent=None)

defineSQLQueries()

feature.AKFeatureStatQuimet module

class AKFeatureStatQuimet(settings, iface, parent=None)

Bases: feature.AKFeatureCustomChartChem.AKFeatureCustomChartChem

Can be used to export the geochemical measurements for the StatQuimet program

119

__init__(settings, iface, parent=None)

feature.AKFeatureStiffPlot module

class AKFeatureStiffPlot(settings, iface, parent=None)

Bases: feature.AKFeatureCustomChartChem.AKFeatureCustomChartChem

Generate a Stiff plot with the selected measurements.

__init__(settings, iface, parent=None)

feature.AKFeatureChemTimePlot module

class AKFeatureChemTimePlot(settings, iface, parent=None)

Bases: feature.AKFeatureCustomChartChem.AKFeatureCustomChartChem

Generate a time plot with the selected measurements.

__init__(settings, iface, parent=None)

feature.AKFeatureHydroTimePlot module

class AKFeatureHydroTimePlot(settings, iface, parent=None)

Bases: feature.AKFeatureCustomChartHydro.AKFeatureCustomChartHydro

Generate a time plot with the selected measurements.

__init__(settings, iface, parent=None)

Module contents

120

Form package

Submodules

form.AKForm module

class AKForm(iface, parent=None)

Bases: PyQt4.QtGui.QDialog

__init__(iface, parent=None)

setActiveLayer(activeLayer)

form.AKFormCreatedDB module

class AKFormCreateDB(iface, parent=None)

Bases: form.AKForm.AKForm, Ui_Dialog

__init__(iface, parent=None)

form.AKFormDBManagement module

class AKFormDBManagement(iface, parent=None)

Bases: form.AKForm.AKForm, Ui_Dialog

__init__(iface, parent=None)

form.AKFormHydroUnitSelection module

class AKFormHydroUnitSelection(iface, parent=None)

Bases: form.AKForm.AKForm, Ui_Dialog

__init__(iface, parent=None)

form.AKFormNormative module

class AKFormNormative(iface, parent=None)

Bases: form.AKForm.AKForm, Ui_Dialog

__init__(iface, parent=None)

form.AKFormQueryMeasurements module

class AKFormQueryMeasurements(iface, parent=None)

Bases: form.AKForm.AKForm, Ui_Form

__init__(iface, parent=None)

form.AKFormQuerySamples module

121

class AKFormQuerySamples(iface, parent=None)

Bases: form.AKForm.AKForm, Ui_Form

__init__(iface, parent=None)

form.AKFormSamplesResults module

class AKFormSamplesResults(iface, parent=None)

Bases: form.AKForm.AKForm, Ui_Form

__init__(iface, parent=None)

Module contents

Model Package

Submodules

model.PlotSttingsModel module

class PlotSettingsModel(parent=None)

Bases: PyQt4.QtCore.QAbstractTableModel

__init__(parent=None)

columnCount(parent=<PyQt4.QtCore.QModelIndex object at 0x063975B0>)

columnFromField(family, id)

data(index, role=0)

getDictData()

rowCount(parent=<PyQt4.QtCore.QModelIndex object>)

setData(index, value, role=2)

setInitialData(dict_data)

model.QueryManagerSamplesModel module

class QueryManagerSamplesModel(sqlQuery, pkField, parent=None)

Bases: PyQt4.QtSql.QSqlQueryModel

122

__init__(sqlQuery, pkField, parent=None)

flags(index)

reset()

setActive(fieldId, value)

setDB(db)

setData(index, value, role=2)

model.SamplesMeasurementsModel module

class SamplesMeasurementsModel(parent=None)

Bases: PyQt4.QtCore.QAbstractTableModel

__init__(parent=None)

addColumn(parameterId, paramName, baseParam, unit, unitCode, unitId, name, label=’‘)

addFixedColumns()

addSimpleColumn(header)

columnCount(parent=<PyQt4.QtCore.QModelIndex object at 0x042BE030>)

data(index, role=0)

flags(index)

getCustomColumns()

getMeasurementColumnInfo()

getNumberOfColumns()

headerData(section, orientation, role=0)

reset()

retrieveMeasurementColumnParameters(tableModel)

retrieveMeasurements(tableModel)

rowCount(parent=<PyQt4.QtCore.QModelIndex object at 0x042BC3F0>)

setData(index, value, role=2)

setInitialData(tableModel)

123

model.SavedQueryMeasurementsModel module

class MEASUREMENT_RESULTS

Active = 0

BaseParamId = 8

Campaign = 5

IsCalculated = 16

LimitValue = 11

MeasurementDate = 6

MeasurementId = 11

MeasurementValue = 10

Observation = 3

ParamId = 7

Parameter = 9

Point = 2

PointId = 1

Sample = 3

SampleDate = 4

Unit = 13

UnitCode = 15

UnitId = 14

Value = 12

XCoord = 17

YCoord = 18

count = 19

class SavedQueryMeasurementsModel(parent=None)

Bases: PyQt4.QtCore.QAbstractTableModel

124

__init__(parent=None)

columnCount(parent=<PyQt4.QtCore.QModelIndex object at 0x042BC470>)

data(index, role=0)

flags(index)

headerData(section, orientation, role=0)

parseCompValue(fullString, paramProps)

reset()

rowCount(parent=<PyQt4.QtCore.QModelIndex object at 0x042BC3B0>)

setDB(db)

setData(index, value, role=2)

setOutOfRangeParams(params)

setQuery(query, pointsTableInfo)

Module contents

Resources package

Submodules

resources.resources module

qCleanupResources()

qInitResources()

Module contents

Utils package

Submodules

utils.TableUtils module

addCellInRow(row, value)

addEmptySpacesToRow(row, numSpaces)

addHeader(textdoc, row, val, numCols, styleName)

valuetype(val)

Module contents

125

View package

Submodules

view.ChecBoxDelegate module

class CheckBoxDelegate(parent)

Bases: PyQt4.QtGui.QStyledItemDelegate

A delegate that places a fully functioning QCheckBox in every cell of the column to which it’s

applied

__init__(parent)

createEditor(parent, option, index)

editorEvent(event, model, option, index)

getCheckBoxRect(option)

paint(painter, option, index)

setModelData(editor, model, index)

Module contents

External packages

Description

The following third party libraries are provided with the plugin distribution:

• ChemPlotLib 1.0: A GPL licensed library that draws the chemical plots provided in the

plugin: Stiff diagram, Piper diagrams and SAR plots but also standard plots as 1D line

plots. It relies on Matplotlib 1.5 and. ChemPlotLib offers extensive customization of

plots, title labels, axis, edges sizes and colours can be chosen by users.

• Openpyxl2.3 (https://openpyxl.readthedocs.io): A MIT licensed library for reading and

writing Excel 2010xlsx/xlsm/xltx/xltm files.AkvaGIS uses it to export data to MSExcel

spreadsheets format.

• Odfpy 1.3 (https://pypi.python.org/pypi/odfpy): A library to read and write

OpenDocument v. 1.2 files. AkvaGIS uses it to export data to ODF spreadsheets format.

• Pyexcel 0.2 (https://pyexcel.readthedocs.io): A BSD licensed Python Wrapper that

provides one API for reading, manipulating and writing data in csv, ods, xls, xlsx and xlsm

files. AkvaGIS uses it to export data to different spreadsheets formats.

126

External module

extenal package

Subpackages

external.chemPlotLib package

Module contents

external.odf package

Module contents

external.openpyxl package

Module contents

Imports for the openpyxl package.

external.pyexcel package

Module contents

pyexcel

pyexcel is a wrapper library to read, manipulate and write data in different excel formats: csv,

ods, xls, xlsx and xlsm. It does not support formulas, styles and charts.

get_array(**keywords)

Obtain an array from an excel source

Parameters keywords – see get_sheet()

get_book_dict(**keywords)

Obtain a dictionary of two dimensional arrays

Parameters keywords – see get_book()

get_dict(name_columns_by_row=0, **keywords)

Obtain a dictionary from an excel source

127

Parameters

• name_columns_by_row – specify a row to be a dictionary key. It is default to 0

or first row.

• keywords – see get_sheet()

If you would use a column index 0 instead, you should do:

get_dict(name_columns_by_row=-1, name_rows_by_column=0)

get_records(name_columns_by_row=0, **keywords)

Obtain a list of records from an excel source

Parameters

• name_columns_by_row – specify a row to be a dictionary key. It is default to 0

or first row.

• keywords – see get_sheet()

If you would use a column index 0 instead, you should do:

get_records(name_columns_by_row=-1, name_rows_by_column=0)

128

Appendix G Programmer Documentation for OAT

oatlib.method module

class oatlib.method.Methodoatlib.method.Method

Bases: object

Initialize the class

Parameters: self (obj) – the class

--

execute(oat)oatlib.method.Method.execute

base method for processing

class oatlib.method.Compare(simulation, stats=[u'BIAS'], exponent=1, align=False)oatlib.method.Compare

Bases: oatlib.method.Method

Calculate comparison statistics of the observation with respect of another serie

(simulation)

Parameters:

 simulation (oat.Sensor) – an oat.Sensor object considered as simulation
value for comparison.

 stats (list) – The desired statistics to be avaluated, allowed values are: BIAS,
STANDARD_ERROR, RELATIVE_BIAS, RELATIVE_STANDARD_ERROR,

 COEFFICIENT_OF_EFFICIENCY, INDEX_OF_AGREEMENT,
VOLUMETRIC_EFFICIENCY. (NASH_SUTCLIFFE,) –

 exponent (int) – the exponent used in the calculation of
COEFFICIENT_OF_EFFICIENCY or INDEX_OF_AGREEMENT. Allowed values [1,
2]

Returns: a dictionary of requested statistics

execute(oat)oatlib.method.Compare.execute

execute method

129

class oatlib.method.CumuativeSumoatlib.method.CumuativeSum

Bases: oatlib.method.Method

Returns: a new time series with cumulative sum data

execute(oat)oatlib.method.CumuativeSum.execute

class oatlib.method.DigitalFilter(fs, lowcut, highcut=0.0, order=5,

btype=u'lowpass')oatlib.method.DigitalFilter

Bases: oatlib.method.Method

bandpass Butterworth filter

Parameters:

 lowcut (float) – low cutoff frequency
 highcut (float) – high cutoff frequency
 fs (float) – sampling frequency
 order (int) – the filter order
 btype (str) – band type, one of [‘lowpass’, ‘highpass’, ‘bandpass’, ‘bandstop’]

Returns: A new OAT object with filitered data

execute(oat)oatlib.method.DigitalFilter.execute

Apply bandpass Butterworth filter to an OAT object

class oatlib.method.Exceedance(values=None, perc=None, etu=u'days',

under=False)oatlib.method.Exceedance

Bases: oatlib.method.Method

Exceedance probability calculation

Parameters:

 values (list) – list of excedance values to calculate the excedance probability
 perc (list) – list of exceedance probability to calculate the excedance values
 etu (string) – excedance time unit, allowed

[‘seconds’,’minutes’,’hours’,’days’,’years’], default=’days’

130

 under (bool) – caluclate the probability for which values are exceeded (False)
or are not exceeded (“True”)

Returns: A list of (values,probability,time) tuples, output excedance time is

returned according specified etu value

execute(oat)oatlib.method.Exceedance.execute

class oatlib.method.Fill(fill=None, limit=None)oatlib.method.Fill

Bases: oatlib.method.Method

Different methods for No data filling

Parameters:

 fill (str) – if not null it defines the method for filling no-data optional are: *
‘bfill’ = backward fill * ‘ffill’ = forward fill * ‘time’ = interpolate proportional
to time distance * ‘spline’ = use spline interpolation * ‘linear’ = linear
interpolation * ‘quadratic’= quadratic interpolation * ‘cubic’= cucbic
interpolation

 limit (int) – if method is ffill or bfill when not null defines the maximum
numbers of allowed consecutive no-data valuas to be filled

execute(oat)oatlib.method.Fill.execute

Fill no-data

class oatlib.method.HydroEvents(rise_lag, fall_lag, window=1, min_peak=0, suffix=u'_event_N',

period=None)oatlib.method.HydroEvents

Bases: oatlib.method.Method

peak flow periods extraction

Parameters:

 rise_lag (float) – The number of days prior to the peak to include in the event
hydrograph.

 fall_lag (float) – The number of days following the peak to include in the
event hydrograph.

 window (int) – Minimum time between successive peaks, in days.
 min_peak (float) – Minimum value for a peak.
 suffix (string) – The name of the time series on which statistical calculations

will be carried out.

131

 period (tuple) – tuple of two elements indicating the BEGIN and END of
datetimes records to be used in peak extraction.

Returns:

A list of oat objects with a storm hydrograph each, they will be

named “seriesName+suffix+number” (e.g.: with a series named

“TEST” and a suffic “_hyevent_N” we will have: [“TEST_hyevent_N1,

TEST_hyevent_N2, ...]

execute(oat)oatlib.method.HydroEvents.execute

calculate peak hydrographs

class oatlib.method.HydroGraphSep(mode, alpha=0.98, bfl_max=0.5)oatlib.method.HydroGraphSep

Bases: oatlib.method.Method

Perform hydrogram separation

Parameters:

 mode (str) – the method for hydrograph separation.
 modes are (Alleowed) –
 TPDF (*) – Two Parameter Digital Filter (Eckhardt, K., 2005. How to Construct

Recursive Digital Filters for Baseflow Separation. Hydrological Processes,
19(2):507-515).

 SPDF (*) – Single Parameter Digital Filter (Nathan, R.J. and T.A. McMahon,
1990. Evaluation of Automated Techniques for Baseflow and Recession
Analysis. Water Resources Research, 26(7):1465-1473).

Returns: a tuple of two oat.Sensor objects (baseflow,runoff)

execute(oat)oatlib.method.HydroGraphSep.execute

apply selected mode for hysep

class oatlib.method.HydroIndices(htype, code, period=None, flow_component=False,

stream_classification=False, median=False, drain_area=None)oatlib.method.HydroIndices

Bases: oatlib.method.Method

peak flow periods extraction

Parameters: htype (str) – alphanumeric code, one of
[MA,ML,MH,FL,FH,DL,DH,TA,TL,TH,RA]

132

 code (int) – code that jointly with htype determine the indiced to calculate
(see TSPROC HYDROLOGIC_INDECES Table 3-2, page 90)

 period (tuple) – tuple of two elements indicating the BEGIN and END of
datetimes records to be used.

 flow_component (str) – Specify the hydrologic regime as defined in Olden
and Poff (2003). One of [“AVERAGE_MAGNITUDE”,
“LOW_FLOW_MAGNITUDE”, “HIGH_FLOW_MAGNITUDE”,
“LOW_FLOW_FREQUENCY, HIGH_FLOW_FREQUENCY”,
“LOW_FLOW_DURATION”, “HIGH_FLOW_DURATION”, “TIMING”,
“RATE_OF_CHANGE”]

 stream_classification (str) –

Specify the hydrologic regime as defined in Olden and Poff

(2003). One of [“HARSH_INTERMITTENT”,

“FLASHY_INTERMITTENT”, “SNOWMELT_PERENNIAL”,

“SNOW_RAIN_PERENNIAL”, “

GROUNDWATER_PERENNIAL”, “FLASHY_PERENNIAL”, “ALL_STREAMS”]

 median (bool) – Requests that indices that normally report the mean of some
other sumamry statistic to instead report the median value.

 drain_area (float) – the gauge area in m3

Returns:

A list of oat objects with a storm hydrograph each, they will be

named “seriesName+suffix+number” (e.g.: with a series named

“TEST” and a suffic “_hyevent_N” we will have: [“TEST_hyevent_N1,

TEST_hyevent_N2, ...]

execute(oat)

calculate peak hydrographs

class oatlib.method.Integrate(periods=[(None, None)], tunit=u'seconds', factor=1, how=u'trapz',

astext=False)oatlib.method.Integrate

Bases: oatlib.method.Method

Perform integration of time series curve

Parameters:

 periods (list) – a list of tuples with upper and lower time limits for volumes
computation.

 tunit (str) – The time units of data employed by the time series, one of:
‘seconds’, ‘minutes’, ‘hours’, ‘days’, ‘years’.

133

 factor (float) – factor by which integrated volumes or masses are multiplied
before storage generally used for unit conversion (e.g.: 0.0283168 will
convert cubic feets to cubic meters)

 how (str) – integration method, available methods are: * trapz - trapezoidal *
cumtrapz - cumulative trapezoidal * simps - Simpson’s rule * romb -
Romberger’s rule

 astext – define if dates has to be returned as text (True) or Timestamp
(False). Default is False.

Returns: a tuple of two oat.Sensor objects (baseflow,runoff)

execute(oat)oatlib.method.Integrate.execute

apply selected mode for hysep

class oatlib.method.Resample(freq=u'1Hour', how=None, fill=None, limit=None,

how_quality=None)oatlib.method.Resample

Bases: oatlib.method.Method

Initialize

Parameters:

 freq (str) – Offset Aliases sting
(A=year,M=month,W=week,D=day,H=hour,T=minute,S=second; e.g.: 1H10T)

 how (str) – sampling method (‘mean’,’max’,’min’,first’,’last’,’median’,’sum’),
default is ‘mean’

 fill (str) – if not null it defines the method for filling no-data (‘bfill’= backward
fill or ‘ffill’=forward fill), default=None

 limit (int) – if not null defines the maximum numbers of allowed consecutive
no-data valuas to be filled

 how_quality (str) – sampling method
(‘mean’,’max’,’min’,first’,’last’,’median’,’sum’) for observation quality index
(default is like ‘how’)

execute(oat)oatlib.method.Resample.execute

Resample the data

class oatlib.method.SetDataValues(value, vbounds=[(None, None)], tbounds=[(None,

None)])oatlib.method.SetDataValues

Bases: oatlib.method.Method

134

Assign a constant value to the time series

Parameters:

 value (float) – the value to be assigned
 vbounds (list) – a list of tuples with upper and lower value limits for

assignment. bounds are closed bounds (min >= x <= max) e.g:
[(None,0.2),(0.5,1.5),(11,None)] will apply: if data is lower then 0.2 # –>
(None,0.2) or data is between 0.5 and 1.5 # –> (0.5,1.5) or data is higher then
11 # –> (11,None)

 tbounds (list) – a list of tuples with upper and lower time limits for
assignment. bounds are closed bounds (t0 >= t <= t1)

Returns: a new oat.Sensor object with assigned constant value based on

conditions

execute(oat)oatlib.method.SetDataValues.execute

aaply statistics acording to conditions

class oatlib.method.SetQualityStat(value, vbounds=[(None, None)], tbounds=[(None, None)],

stat=u'WT')oatlib.method.SetQualityStat

Bases: oatlib.method.Method

Assign a constant weight value to the time series

Parameters:

 value (float) – the value of the weigth to be assigned
 vbounds (list) – a list of tuples with upper and lower value limits for weigth

assignment. bounds are closed bounds (min >= x <= max) e.g:
[(None,0.2),(0.5,1.5),(11,None)] will apply: if data is lower then 0.2 # –>
(None,0.2) or data is between 0.5 and 1.5 # –> (0.5,1.5) or data is higher then
11 # –> (11,None)

 tbounds (list) – a list of tuples with upper and lower time limits for weigth
assignment. bounds are closed bounds (t0 >= t <= t1)

 stat (str) – The type of statistics the weight is estimated from, accepted
values are: * ‘VAR’ (Variance) calculated as 1/Statistic * ‘SD’ (Standard
deviation) calculated as 1/(Statistic)^2 * ‘CV’ (Coefficient of variation)
calculated as 1/(Statistic×ObsValue)^2 * ‘WT’ (Weight) calculated as simple
Statistic * ‘SQRWT’ (Square root of the weight) calculated as Statistic^2

Returns: a new oat.Sensor object with assigned constant weightsand

weight_stat

execute(oat)oatlib.method.SetQualityStat.execute

aaply statistics acording to conditions

135

class oatlib.method.Statistics(data=True, quality=False, tbounds=[None, None])oatlib.method.Statistics

Bases: oatlib.method.Method

Initialize the class

Parameters:

 data (bool) – if True compute statistics of data (default is True)
 quality (bool) – if True compute statistics of quality (default is False)
 tbounds (list) – a list or tuple of string (iso856) with upper and lower time

limits for statistic calculation. bounds are closed bounds (t0 >= t <= t1)

execute(oat)oatlib.method.Statistics.execute

Compute statistics

class oatlib.method.Subtract(sensor, align_method=u'mean')oatlib.method.Subtract

Bases: oatlib.method.Method

Subtract the values of the provided sensor object

Parameters:
 sensor (oat.Sensor) – an oat.Sensor object to be used to subtract values.
 align_method (str) – method for alignment of the sensor time serie

Returns: an oat.Sensor objectsensor.Sensors

Note

the process join the series and align with respect to the first

execute(oat)oatlib.method.Subtract.execute

execute method

class oatlib.method.Statistics(data=True, quality=False, tbounds=[None, None])

Bases: oatlib.method.Method

136

Initialize the class

Parameters:

 data (bool) – if True compute statistics of data (default is True)
 quality (bool) – if True compute statistics of quality (default is False)
 tbounds (list) – a list or tuple of string (iso856) with upper and lower time

limits for statistic calculation. bounds are closed bounds (t0 >= t <= t1)

execute(oat)

Compute statistics

class oatlib.method.Resample(freq=u'1Hour', how=None, fill=None, limit=None, how_quality=None)

Bases: oatlib.method.Method

Initialize

Parameters:

 freq (str) – Offset Aliases sting
(A=year,M=month,W=week,D=day,H=hour,T=minute,S=second; e.g.: 1H10T)

 how (str) – sampling method (‘mean’,’max’,’min’,first’,’last’,’median’,’sum’),
default is ‘mean’

 fill (str) – if not null it defines the method for filling no-data (‘bfill’= backward
fill or ‘ffill’=forward fill), default=None

 limit (int) – if not null defines the maximum numbers of allowed consecutive
no-data valuas to be filled

 how_quality (str) – sampling method
(‘mean’,’max’,’min’,first’,’last’,’median’,’sum’) for observation quality index
(default is like ‘how’)

execute(oat)

Resample the data

class oatlib.method.Fill(fill=None, limit=None)

Bases: oatlib.method.Method

Different methods for No data filling

Parameters:
 fill (str) – if not null it defines the method for filling no-data optional are: *

‘bfill’ = backward fill * ‘ffill’ = forward fill * ‘time’ = interpolate proportional
to time distance * ‘spline’ = use spline interpolation * ‘linear’ = linear

137

interpolation * ‘quadratic’= quadratic interpolation * ‘cubic’= cucbic
interpolation

 limit (int) – if method is ffill or bfill when not null defines the maximum
numbers of allowed consecutive no-data valuas to be filled

execute(oat)

Fill no-data

138

oatlib.sensor moduleoatlib-sensor-module

class oatlib.sensor.Sensor(name, prop, unit, lat=None, lon=None, alt=None, tz=0, desc=None, freq=None,

data_availability=[None, None])oatlib.sensor.Sensor

Inits the oat class

Parameters:

 name (str) – the name of the sensor (maximum length is 10 characters)
 prop (str) – the observed property
 unit (str) – the unit of measure of the observed property
 lat (float) – the latitude of the station
 lon (float) – the longitude of the station
 alt (float) – the altitude of the station
 tz (int) – the time zone
 desc (str) – the description of the time serie
 ts (obj) – a pandas timeseries object with (time, value) columns et (event

time) as time-index and ov (observed values) as value columns
 data_availability (list) – time period of data availability (sensor historical

records)

__repr__(line=4)oatlib.sensor.Sensor.__repr__

the repr method

copy()oatlib.sensor.Sensor.copy

Return a deep copy of the OAT object

--

delete_from_sqlite(source, name=None)oatlib.sensor.Sensor.delete_from_sqlite

Delete the oat object from sqlite

Parameters:
 source (str) – the sqlite file (including path)
 name (list) – the sensor name to be used

--

classmethod from_istsos(service, procedure, observed_property, basic_auth=None,

srid=4326)oatlib.sensor.Sensor.from_istsos

Create the oat class from istSOS

139

Parameters:

 service (str) – url of the SOS service
 procedure (list) – sensor name
 observed_property (list) – observed property name
 basic_auth (tuple) – touple of username and password - e.g.: (‘utente’,‘123’)

--

classmethod from_sqlite(source, sensor)oatlib.sensor.Sensor.from_sqlite

Create the oat class from sqliteif not self.data_availability:

begin = self.oat.ts.index.values[0] end = self.oat.ts.index.values[-1]

self.data_availability = [begin, end]

Parameters:
 source (str) – the sqlite file (including path)
 sensor (list) – sensor name

--

load_ts(stype, **kwargs)oatlib.sensor.Sensor.load_ts

Loader method to append new data to an existing sensor

Parameters:
 stype (str) – data source type
 kwargs – arguments as per specific module

Note

kwarg depends on the type instantiated, please take a look at specific load

methods

--

period(astext=False)oatlib.sensor.Sensor.period

Method to extract the time series upper and lower time limits

Parameters: astext (bool) – define if outsput should be a tuple of datetime object or text

plot(data=True, quality=False, kind=u'line', data_color=u'b', axis=None,

qaxis=None)oatlib.sensor.Sensor.plot

140

plot function

Parameters:

 data (bool) – the sqlite file (including path)
 quality (bool) – the sensor name to be used
 kind (str) – kind of plot
 () (qaxis) – axis for data
 () – axis for quality plot

process(method)oatlib.sensor.Sensor.process

Method to apply a method for processing by implementing the BEHAVIORAL

VISITOR PATTERN

--

save_as_hobfile(set1, set2)oatlib.sensor.Sensor.save_as_hobfile

save a list of sensors as MODFLOW’s HOB input file

--

save_to_sqlite(source, name=None, overwrite=False)oatlib.sensor.Sensor.save_to_sqlite

Save the oat object to sqlite

Parameters:
 source (str) – the sqlite file (including path)
 name (list) – the sensor name to be used (it shall be unique)

ts_const(value, start_time, lenght, frequency=None)oatlib.sensor.Sensor.ts_const

populate time series with constant values

Parameters:

 value (float) – constant value to populate the time serie
 start_time (str) – starting timestamp of the time serie
 lenght (int) – lenght of the time serie
 frequency (str) – frequency of the time serie (‘H’,’D’,’M’,’Y’)

--

ts_from_csv(csvfile, sep=u',', timecol=[0], valuecol=1, qualitycol=-1, skiprows=None, comment=u'#',

na_values=[], dayfirst=False, strftime=None, freq=None)oatlib.sensor.Sensor.ts_from_csv

Load data from a CSV file

141

Parameters:

 csvfile (str) – Either a string path to a file, URL (including http, ftp, and S3
locations), or any object with a read method (such as an open file or StringIO)

 sep (str) – A delimiter / separator to split fields on. With sep=None, read_csv
will try to infer the delimiter automatically in some cases by “sniffing”. The
separator may be specified as a regular expression; for instance you may use
‘|s*’ to indicate a pipe plus arbitrary whitespace.

 timecol (list) – list of column numbers to be used to parse the times of
observations e.g. [0,1]

 valuecol (int) –
 qualitycol (int) – the column number containing the quality index e.g. 3
 skiprows (int) – An integer to skip the first n rows (including headers)
 comment (str) – A character indicating a comment line not to be imported
 na_values (list) – List of values to be associated with no data value,
 dayfirst (bool) – Day came before of month?
 strftime (str) – strftime directive (see http://strftime.org/)

--

ts_from_dict(data)oatlib.sensor.Sensor.ts_from_dict

Load data from a dict with the following structure:

Parameters: data (dict) – dict

Example

data = {

‘time’: [‘2015-12-01T12:00:00’], ‘data’: [12.56], ‘quality’: [100]

}

--

ts_from_gagefile(gagefile, startdate, property=u'stage')oatlib.sensor.Sensor.ts_from_gagefile

Load data from a GAGE file output from modflow

Parameters:

 gagefile (str) – a string path to a file of a MODFLOW GAGE input file
 startdate (str) – isodate starting date (e.g.: ‘2012-11-21T13:20:00+01:00’)
 property (str) – the name of the observation to be uploaded as defined in the

file (default: ‘stage’) accepted values are: Stage, Flow, Depth, Width, Midpt-
Flow, Precip., ET, Runoff

--

http://strftime.org/

142

ts_from_hobfile(hobfile, startdate, hobname, disc, outhob=None,

stat=None)oatlib.sensor.Sensor.ts_from_hobfile

Load data from an hob file output from modflow

Parameters:

 hobfile (str) – a string path to a file of a MODFLOW HOB input file
 startdate (str) – isodate starting date (e.g.: ‘2012-11-21T13:20:00+01:00’)
 hobname (str) – the name of the observation to be uploaded as defined in

the file (e.g.: ‘HOB1’)
 disc (list) – a list of stress period lengths (e.g.: [) or a string path to a file of a

MODFLOW discretization input file
 outhob (str) – a string path to a file a MODFLOW HOB output file (if specified

simulated values are uploaded, if not specified observed values are used)
 stat (str) – a string defining the STAT to be uploaded as quality value of the

seri’STATh’ or ‘STATdd’ (applies to MODFLOW-2000 files only)

--

ts_from_istsos(service, procedure, observed_property, offering=None, event_time=None,

spatial_filter=None, basic_auth=None, freq=None, aggregate_function=None,

aggregate_interval=None, qualityIndex=True)oatlib.sensor.Sensor.ts_from_istsos

Load data from an istsos server

Parameters:

 service (str) – url of the SOS service
 procedure (list) – sensor name
 observed_property (list) – observed property name
 offering (str) – name of the offering - default value is ‘temporary’
 temporalFilter (tuple) – begin and end instant for a between filter - default

value None
 featureOfInterest (list) – name of the feature of interests - default value

None
 spatialFilter (list) – bbox coordinates as a list [minx,miny,maxx,maxy]- default

value None
 basic_auth (tuple) – touple of username and password - e.g.: (‘utente’,‘123’)
 aggregate_function (str) – aggregate function, e.g. MAX, MIN, AVG, SUM,

default None
 aggregate_interval (str) – aggregate interval, expressed in iso 8601 duration

e.g. “P1DT12H”
 qualityIndex (bool) – if True istSOS qualityIndex is loaded

--

ts_from_listfile(listfile, startdate=None, cum=False, prop=u'TOTAL',

inout=u'IN')oatlib.sensor.Sensor.ts_from_listfile

143

Load data from a listing file output of modflow model:

Parameters:

 listfile (str) – Either a string path to a file, URL (including http, ftp, and S3
locations), or any object with a read method (such as an open file or StringIO)

 startdate (str) – isodate starting date (e.g.: ‘2012-11-21T13:20:00+01:00’)
 cum (bool) – use cumulative volumes if True, use time step rates if False
 prop (str) – the property to be read; one of ‘STORAGE’, ‘CONSTANT HEAD’,

‘WELLS’, ‘RIVER LEAKAGE’, ‘TOTAL’
 inout (str) – ‘IN’ or ‘OUT’ volumes

--

ts_from_sqlite(source, sql=None)oatlib.sensor.Sensor.ts_from_sqlite

Load data from SQLITE

Parameters:
 source (str) – the sqlite file (including path)
 sql (str) – the sql selecting two fields named time and data - optional

--

ts_ones(start_time, lenght, frequency=None)oatlib.sensor.Sensor.ts_ones

populate time series with one (1) values

Parameters:

 start_time (str) – starting timestamp of the time serie
 lenght (int) – lenght of the time serie
 frequency (str) – frequency of the time serie (‘H’,’D’,’M’,’Y’)

--

ts_randn(start_time, lenght, frequency=None)oatlib.sensor.Sensor.ts_randn

populate time series with random values

Parameters:

 start_time (str) – starting timestamp of the time serie
 lenght (int) – lenght of the time serie
 frequency (str) – frequency of the time serie (‘H’,’D’,’M’,’Y’)

--

ts_zeros(start_time, lenght, frequency=None)oatlib.sensor.Sensor.ts_zeros

144

populate time series with zero (0) values

Parameters:

 start_time (str) – starting timestamp of the time serie
 lenght (int) – lenght of the time serie
 frequency (str) – frequency of the time serie (‘H’,’D’,’M’,’Y’)

weight(method)oatlib.sensor.Sensor.weight

145

Appendix H Programmer Documentation for Calibration Module

There are three Python modules used to support model calibration and uncertainty analysis

within the FREEWAT plugin. The modules support head observations (mfhob.py), flow

gain/loss observations (mfflwob.py), and creation of the main UCODE input file (ucode_in.py).

The core of each of these modules is reported in the following section.

ModflowHob object

Attributes summary table

Variable Name Type/Size Description

model Input/Python object FloPy model object to which this package will be

linked.

hob Input/Python object FloPy HOB Package object to which this package

will be linked

Methods

The ModflowHob object consists of 1 method: write_file. An explanation is provided below for

this method.

write_file

This method takes as input the hydraulic head observation locations in space (layer, row,

column) and time (stress period and time step) and writes a corresponding Modflow HOB file.

It also writes corresponding instruction files that can be used by Ucode in the next step.

Input: the ModflowHob object itself (self)

Output: no variable in output. At the end of the process new *.hob and *.hob_ins output files

are written. They are named modelname.hob and modelname.hob_ins, for the head output

and corresponding instruction file.

Execution scheme:

 retrieve head observation information

 write HOB input

 write instruction file input

 update MODFLOW .NAM file

146

ModflowHob object

Attributes summary table

Variable Name Type/Size Description

model Input/Python object FloPy model object to which this package will be

linked.

chob Input/Python object FloPy CHOB Package object to which this package

will be linked

gbob Input/Python object FloPy GBOB Package object to which this package

will be linked

drob Input/Python object FloPy DROB Package object to which this package

will be linked

rvob Input/Python object FloPy RVOB Package object to which this package

will be linked

Methods

The ModflowHob object consists of 1 method: write_file. An explanation is provided below for

this method.

write_file

This method takes as input the flow gain/loss observation locations in space (layer, row,

column) and time (stress period and time step) and writes a corresponding Modflow CHOB,

GBOB, DROB, or RVOB file. It also writes corresponding instruction files that can be used by

Ucode in the next step.

Input: the ModflowHob object itself (self)

Output: no variable in output. At the end of the process new flow observation and

corresponding instruction output files are written. They are named modelname.chob and

modelname.chob_ins for constant head observations and the corresponding instruction file,

modelname.ghob and modelname.gbob_ins, for general head observations and corresponding

instruction file, modelname.drob and modelname.drob_ins, for drain observations and

corresponding instruction file, and modelname.rvob and modelname.rvob_ins, for the river

observations and corresponding instruction file.

147

Execution scheme:

 retrieve flow observation information

 write CHOB, GBOB, DROB, or RVOB input

 write corresponding instruction file input

 update MODFLOW .NAM file

UcoderWriter object

Methods

The UcodeWriter object consists of 1 method: write_file. An explanation is provided below for

this method.

write_file

This method takes as input the quantities and user selections for running Ucode.

Input: the ModflowHob object itself (self)

Output: no variable in output. At the end of the process new *._ucode.in output file is written.

It is named modelname_ucode.in and controls the execution options of Ucode.

Execution scheme:

 retrieve calibration information

 write Ucode input

